
ANICANA Technical Documents

ANICANA PJ

May 01, 2024

RELEASE INFORMATION FOR EACH PLATFORM FUNCTION:

1 Release Information List 1

2 LEVICA-appProduction 3
2.1 release information . 3

3 LEVICA-appArk.one 5
3.1 release information . 5

4 LEVICA APIProduction 7
4.1 release information . 8

5 LEVICA APIArk.one 9
5.1 release information . 10

6 ARCANA Generation APIProduction 11
6.1 release information . 11

7 ARCANA Generation APIArk.one 13
7.1 release information . 13

8 LEVIAS IDProduction 15
8.1 release information . 15

9 LEVIAS IDArk.one 17
9.1 release information . 17

10 OctillionProduction 19
10.1 release information . 19

11 OctillionArk.one 21
11.1 release information . 21

12 API ServerProduction 23
12.1 release information . 23

13 API ServerArk.one 25
13.1 release information . 25

14 AdSquareProduction 27
14.1 release information . 27

i

15 AdSquareArk.one 29
15.1 release information . 29

16 What is ANICANA Chain? 31
16.1 Consortium-Based Private Chain . 31

17 System Requirements 33

18 Consensus Algorithm 35

19 How to Join ANICANA 37

20 Quick Start for Publishers 39
20.1 Initial Setup . 39
20.2 Content Development . 40
20.3 Operations . 41

21 Knights of the Round Table 43
21.1 Permission-type Nodes Granting Approval for Validators . 43
21.2 Basic Structure . 43

22 Roles in the Knights of the Round Table 45
22.1 Roles . 45
22.2 Receipt of ANM by Knights & Queen . 46
22.3 Queen’s Election . 46
22.4 Vote of No Confidence against the Queen . 46
22.5 Opening of Validator (Candidate) Nodes . 47

23 Mechanism of ARCANA Generation 49
23.1 ARCANA Generation . 51
23.2 Storage of ARCANA Generation Information (IPFS) . 51
23.3 Storage of ARCANA Generation Information Index (Contract) . 51

24 ARCANA Life Cycle 53
24.1 ARCANA Life Cycle . 53

25 ANICANA Life Cycle 55
25.1 Development Engineers / System Vendors, etc. 56
25.2 Content Owners / Publishers (Validators) . 56
25.3 Users / Content Users . 56
25.4 Secondary Marketplace / Market Operators . 56
25.5 Extractors / Disassembling Engineers . 56

26 Validator Setup Procedure 57

27 System Configuration 59
27.1 Configuration Diagram . 59

28 ANICANA Wallet Registration 61
28.1 Wallet Registration Procedure . 61

29 Preparing Your AWS Account 69

30 Validator Setup 71

31 Apply as a Validator Candidate 73

ii

32 Generating Square Keys 75

33 Content Development Overview 77
33.1 Implementation Flow . 77

34 Ark.one Environment Information 79
34.1 Environment Information . 79
34.2 Contract Addresses . 80
34.3 Contract ABI . 80
34.4 Interfaces . 81
34.5 Libraries . 81
34.6 ANICANA Portal Site . 81
34.7 Call ARCANA Generation Page Script . 81
34.8 Check Status . 82
34.9 Login Script . 82
34.10 LEVICA . 82
34.11 IPFS . 82

35 Production Environment Information 83
35.1 Environment Information . 83
35.2 Contract Addresses . 84
35.3 Contract ABI . 84
35.4 Interfaces . 85
35.5 Libraries . 85
35.6 ANICANA Portal Site . 85
35.7 ARCANA Generation Page Invocation Script . 85
35.8 check status . 86
35.9 Login Script . 86
35.10 LEVICA . 86
35.11 IPFS . 86

36 User Wallet Retrieval 87
36.1 User Registration Flow . 87

37 Wallet Connection 89
37.1 API Specification . 89

38 ARCANA Generation Process 91
38.1 Integration Flow with ARCANA Generation Page (API) . 91
38.2 ARCANA Generation on the Ark.one . 92

39 ARCANA Generation API 93
39.1 API Specifications . 93

40 Get a List of Owned EGGs 97

41 Signature Generation Procedure 99
41.1 Creation of Signature Data for ARCANA Generation . 99
41.2 Creation of Signature Data for PERSONA Distribution . 99
41.3 Libraries . 100

42 LEVICA Payment 101
42.1 API URL Format . 101
42.2 Environment Information . 101
42.3 Request Authentication . 101
42.4 Integration Flow with LEVICA . 103

iii

42.5 Main APIs for Integration . 103
42.6 Testing in the Staging Environment . 108

43 PERSONA Overview 109
43.1 PERSONA Growth / Object Absorption Contract . 109
43.2 DrawChain / Contract to Retrieve Specific Data . 109

44 PERSONA Implementation Procedure 111

45 Absorbing 113
45.1 Overview Diagram . 114
45.2 Setting Absorbing Conditions . 115

46 Implementation of DrawChain 119
46.1 Overview . 119
46.2 Setting Up DrawChain . 120
46.3 Other DrawChain Functions . 121
46.4 Executing DrawChain . 123
46.5 Implemented IDrawChainAuthorizers . 124
46.6 Contract to Limit the Ability Values of PERSONAs that Can Draw (DrawAbilityLimitter.sol) 124
46.7 Contract to Limit PERSONA Categories that Can Draw (DrawPersonaCategoryLimitter.sol) 125
46.8 Contract to Limit the Number of Draws (DrawQuantityLimitter.sol) 125
46.9 Contract to Limit the Caller of draw() to Subscribers of the Square Key Associated with DrawChain

(DrawFollowerLimitter.sol) . 125
46.10 Contract to Limit the Number of draw() Calls by the Same PERSONA (DrawCountLimitter.sol) . . . 126
46.11 Contract to Limit draw() Calls to Specific PERSONAs (DrawPersonaLimitter.sol) 126

47 Generating and Distributing PERSONA 127
47.1 Overview Diagram . 127
47.2 Generating PERSONA . 127
47.3 Absorbing . 128
47.4 PERSONA Contract . 128

48 Using PERSONA as a User 133
48.1 Absorbing . 133
48.2 Executing DrawChain . 136

49 ARCANA Generation Information 139
49.1 ARCANA Generation Information . 139

50 ANICANA API 141
50.1 Detail API . 141
50.2 Ipfs Upload API . 141

51 Affiliate Functionality 143
51.1 Implementation Flow - Issuance of Referral Code . 143
51.2 Implementation Flow - Use of Referral Code . 146

52 Requesting Matrix Development 147
52.1 Matrix Development . 147
52.2 Matrix Construction Steps . 147
52.3 Matrix Standards . 148
52.4 Matrix Templates . 148

53 Generating EGGs 149
53.1 Generation Process . 149

iv

54 Checking EGG Inventory 151

55 Uploading to IPFS 153
55.1 Environment Information . 153

56 Obtaining ANM (ANIMA) 155
56.1 What is ANIMA (ANM)? . 155
56.2 Instances Where ANIMA is Required as Gas . 155
56.3 ANIMA Generation Logic . 155

57 Validator Management Interface 157
57.1 Obtaining a Private Key . 157
57.2 DASHBOARD . 157
57.3 PROFILE . 158
57.4 EGG . 160
57.5 KNIGHT . 160
57.6 QUEEN . 163

58 LEVICA Merchant Management Screen 165
58.1 Payment History Screen . 165
58.2 All Billing History Screen . 166
58.3 Reuse Settings Screen . 166
58.4 About Reuse Functionality . 166

59 Interface Specifications 169
59.1 MATRIX Standard . 169
59.2 Other Smart Contract Interfaces . 169

60 Gene Calculation 171
60.1 Gene Overview . 171
60.2 Data Structure of Gene Information . 171
60.3 Gene Calculation for EGG Generation from SHARD . 171
60.4 About Mutation . 172

61 ARCANA Extraction 173
61.1 Duration of ARCANA Extraction . 173
61.2 Number of ARCANA SHARDs Obtained in ARCANA Extraction 174
61.3 Steps for ARCANA Extraction . 174

62 ARCANA Attribute Value Calculation 175
62.1 Lottery Probability of Green Stars . 175
62.2 Lottery Probability of Elements . 175

63 Bloodline 177
63.1 Overview . 177
63.2 Information Retrieval . 177
63.3 List of Bloodlines . 178

64 Tenebrae Overview 181
64.1 Overview . 181
64.2 Issuance of Tenebrae . 181
64.3 Equipping Tenebrae . 181
64.4 Activation of Tenebrae . 181
64.5 Tenebrae Flow . 185

v

65 Implementation of Tenebrae 187
65.1 Operator (RECIPE Owner) . 188
65.2 Manufacturer . 192
65.3 Consumer (TENEBRAE Token Owner) . 192
65.4 Publisher . 193

66 Advanced Security Settings for Wallet Connection 195
66.1 One-Time Token . 196

67 Update History 197

vi

CHAPTER

ONE

RELEASE INFORMATION LIST

Please see each page for details of the release.

No Date Updated Contents

1.
LEVICA-appProduction

2.
LEVICA-appArk.one

3.
2024/05/01 LEVICA APIProduction

4.
2024/05/01 LEVICA APIArk.one

5.
ARCANA Generation APIProduc-
tion

6.
ARCANA Generation APIArk.one

7.
2024/05/01 LEVIAS IDProduction

8.
2024/05/01 LEVIAS IDArk.one

9.
OctillionProduction

10.
OctillionArk.one

11.
2024/03/10 API ServerProduction

12.
2024/03/10 API ServerArk.one

13.
AdSquareProduction

14.
AdSquareArk.one

1

ANICANA Technical Documents

2 Chapter 1. Release Information List

CHAPTER

TWO

LEVICA-APPPRODUCTION

2.1 release information

No Version Release Date Release Notes

1.
1.0.8 Latest version as of

2024/03/15

3

ANICANA Technical Documents

4 Chapter 2. LEVICA-appProduction

CHAPTER

THREE

LEVICA-APPARK.ONE

3.1 release information

No Version Release Date Release Notes

1.
1.0.8 Latest version as of

2024/03/15

5

ANICANA Technical Documents

6 Chapter 3. LEVICA-appArk.one

7

ANICANA Technical Documents

CHAPTER

FOUR

LEVICA APIPRODUCTION

4.1 release information

No Version Release Date Release Notes

3.
1.3.1 2024/05/01

<New Feature>
Create an API to reuse all
past payments.
Re-enable the API, all
past payments for that
merchant will be treated
as reused, and the levica
for all payments will be
sent to the specified wallet
address.
Create an API to reuse all
past payments made by
the merchant.

2.
1.3.0 2024/05/01

<New Feature>
LEVICA merchant
management screen will
be released.
User payment history for
merchants and payment
information from
LEVICA to merchants
can be viewed.
Also, a portion of the user
payment is not reimbursed
by bank transfer,
We will also add the
ability to set up the
automatic transfer of a
portion of a user’s
payment to another
LEVICA account for
re-use.
For more information,
please refer to the here
page.

<Merchant Management
Screen>
Settlement history screen:
User refund amount and
reused amount are
displayed.

All billing history screen:
Displays the total sales for
each month, as well as the
maximum amount set for
refunds for the following
month, and the actual
amount deposited. The
deposit process is
performed from the admin
screen.

Reuse setting screen:
Enable/Disable re-use, set
the maximum amount of
refund for the next term,
and set the wallet address
of the re-use destination.

1.
1.2.10 Latest version as of

2024/03/15

8 Chapter 4. LEVICA APIProduction

9

ANICANA Technical Documents

CHAPTER

FIVE

LEVICA APIARK.ONE

5.1 release information

No Version Release Date Release Notes

3.
1.3.1 2024/05/01

<New Feature>
Create an API to reuse all
past payments.
Re-enable the API, all
past payments for that
merchant will be treated
as reused, and the levica
for all payments will be
sent to the specified wallet
address.
Create an API to reuse all
past payments made by
the merchant.

2.
1.3.0 2024/03/18

<New Feature>
LEVICA merchant
management screen will
be released.
User payment history for
merchants and payment
information from
LEVICA to merchants
can be viewed.
Also, a portion of the user
payment is not reimbursed
by bank transfer,
We will also add the
ability to set up the
automatic transfer of a
portion of a user’s
payment to another
LEVICA account for
re-use.
For more information,
please refer to the here
page.

<Merchant Management
Screen>
Settlement history screen:
User refund amount and
reused amount are
displayed.

All billing history screen:
Displays the total sales for
each month, as well as the
maximum amount set for
refunds for the following
month, and the actual
amount deposited. The
deposit process is
performed from the admin
screen.

Reuse setting screen:
Enable/Disable re-use, set
the maximum amount of
refund for the next term,
and set the wallet address
of the re-use destination.

1.
1.2.10 Latest version as of

2024/03/15

10 Chapter 5. LEVICA APIArk.one

CHAPTER

SIX

ARCANA GENERATION APIPRODUCTION

6.1 release information

No Version Release Date Release Notes

1.
1.28.6 Latest version as of

2024/03/15

11

ANICANA Technical Documents

12 Chapter 6. ARCANA Generation APIProduction

CHAPTER

SEVEN

ARCANA GENERATION APIARK.ONE

7.1 release information

No Version Release Date Release Notes

1.
1.28.6 Latest version as of

2024/03/15

13

ANICANA Technical Documents

14 Chapter 7. ARCANA Generation APIArk.one

CHAPTER

EIGHT

LEVIAS IDPRODUCTION

8.1 release information

No Version Release Date Release Notes

2.
2.0.0 2024/05/01

levias id login page
change
https://leviasid.anicana.
org/login/idms

1.
1.3.10 Latest version as of

2024/03/15

15

https://leviasid.anicana.org/login/idms
https://leviasid.anicana.org/login/idms

ANICANA Technical Documents

16 Chapter 8. LEVIAS IDProduction

CHAPTER

NINE

LEVIAS IDARK.ONE

9.1 release information

No Version Release Date Release Notes

2.
2.0.0 2024/05/01

levias id login page
change
https://leviasid.anicana.
org/login/idms

1.
1.3.10 Latest version as of

2024/03/15

17

https://leviasid.anicana.org/login/idms
https://leviasid.anicana.org/login/idms

ANICANA Technical Documents

18 Chapter 9. LEVIAS IDArk.one

CHAPTER

TEN

OCTILLIONPRODUCTION

10.1 release information

No Version Release Date Release Notes

1.
1.2.5 Latest version as of

2024/03/15

19

ANICANA Technical Documents

20 Chapter 10. OctillionProduction

CHAPTER

ELEVEN

OCTILLIONARK.ONE

11.1 release information

No Version Release Date Release Notes

1.
1.2.5 Latest version as of

2024/03/15

21

ANICANA Technical Documents

22 Chapter 11. OctillionArk.one

CHAPTER

TWELVE

API SERVERPRODUCTION

12.1 release information

No Version Release Date Release Notes

2.
1.21.1 2024/03/09 Suppress transaction fail-

ures caused by exceeding
gas limits.

1.
1.21.0 2024/03/02 applove/transfer Improved

api throughput.

23

ANICANA Technical Documents

24 Chapter 12. API ServerProduction

CHAPTER

THIRTEEN

API SERVERARK.ONE

13.1 release information

No Version Release Date Release Notes

2.
1.21.1 2024/03/09 Suppress transaction fail-

ures caused by exceeding
gas limits.

1.
1.21.0 2024/03/02 applove/transfer Improved

api throughput.

25

ANICANA Technical Documents

26 Chapter 13. API ServerArk.one

CHAPTER

FOURTEEN

ADSQUAREPRODUCTION

14.1 release information

No Version Release Date Release Notes

1.
Not released as of
2024/03/15

27

ANICANA Technical Documents

28 Chapter 14. AdSquareProduction

CHAPTER

FIFTEEN

ADSQUAREARK.ONE

15.1 release information

No Version Release Date Release Notes

1.
Not released as of
2024/03/15

29

ANICANA Technical Documents

30 Chapter 15. AdSquareArk.one

CHAPTER

SIXTEEN

WHAT IS ANICANA CHAIN?

16.1 Consortium-Based Private Chain

ANICANA is a Quorum-based private chain, on which Validators constitute a decentralized network. Various token
issues based on people’s experiences, and smart contracts for token transfers adhere to standards like ERC-1155, ERC-
721, ERC-20, and more. An overview of the main use cases is as follows:

16.1.1 1. Become a Network Validator

With implementing the ANICANA package, you can become a participating node (Validator) after being approved by
a permission-type node (Knight). The process is designed to be operational even with minimal blockchain expertise.

16.1.2 2. Send Transactions to the Network

Nodes have a JSON-RPC interface compatible with Ethereum series (EVM), allowing connections from existing
Ethereum-related tools like Metamask and Remix IDE. Additionally, basic operations can be performed from the
ANICANA-exclusive wallet.

31

ANICANA Technical Documents

32 Chapter 16. What is ANICANA Chain?

CHAPTER

SEVENTEEN

SYSTEM REQUIREMENTS

Basic Specifications

OS Linux/UNIX-based OS
CPU 4 cores
Memory 8GB
Disk 100GB

Middleware

No Item Version Purpose

1.
git 2.24.3 Fetching open-source

code from platforms like
GitHub

2.
gcc 4.0.0 or above Building Quorum

3.
go 1.14.4 or above Building Quorum

4.
geth 1.9.7-stable Running Quorum nodes

5.
istanbul-tools v1.0.3 Generating istanbul pri-

vate chain genesis param-
eters

6.
node v10.20.0 or above Running Quorum node ap-

plications (scripts)

7.
npm 6.14.5 or above Installing Node packages

8.
solc 2.6.10 or above Solidity compiler

9.
python3.0 3.0 or above Contract deployment and

script execution

33

ANICANA Technical Documents

34 Chapter 17. System Requirements

CHAPTER

EIGHTEEN

CONSENSUS ALGORITHM

ANICANA’s consensus algorithm adopts IBFT (Istanbul Byzantine Fault Tolerance). The Blocks generated by IBFT
are signed by the block’s proposing node and multiple validators, therefore have very high tamper resistance because
it is necessary to know all of the private keys in order to tamper with them.

35

ANICANA Technical Documents

36 Chapter 18. Consensus Algorithm

CHAPTER

NINETEEN

HOW TO JOIN ANICANA

To participate in ANICANA, you will need to go through the following three main steps:

1. Validator Initial Setup

2. Content Development

3. System Operation

Each chapter of this document explains the procedures for each of these steps.

37

ANICANA Technical Documents

38 Chapter 19. How to Join ANICANA

CHAPTER

TWENTY

QUICK START FOR PUBLISHERS

This guide introduces the necessary steps to participate as a Validator in the ANICANA network and perform
ARCANA generation.
Items marked with are to be carried out by the publisher, while the ANICANA technical support team handles the
rest.

20.1 Initial Setup

20.1.1 Steps to Join the ANICANA Network

1. Perform registration in the wallet to obtain a wallet address.

2. Prepare an AWS account.

3. Set up the Validator.

39

ANICANA Technical Documents

Reference Pages

Content Reference Page
Obtain Validator Blockchain Address in ANICANA
Wallet

Register in ANICANA Wallet

Prepare AWS (Amazon Web Services) Account Prepare AWS Account
Set Up Validator Components on AWS Validator Setup
Apply as a Participating Node in Knights of the Round
Table

Apply as Validator Candidate

About Knights of the Round Table Knights of the Round Table; Roles in Knights of the Round
Table

20.2 Content Development

20.2.1 Steps to Build Matrix

1. Implement and deploy the Matrix.

2. Generate the SquareKey.

3. Obtain ANIMA.

4. Set pricing for Egg generation in Matrix, configure SquareKey, and register.

5. Obtain MatrixID through the above steps.

Reference Pages

Content Reference Page
Obtain Square Key for EGG Management Generate Square Key
Request Development of Matrix for EGG Generation Request Matrix Development
Obtain ANM (ANIMA) for Registering Matrix Get ANM (ANIMA)
Explanation of Shard, EGG, ANIMA, and ARCANA ARCANA life cycle; ANICANA life cycle

40 Chapter 20. Quick Start for Publishers

ANICANA Technical Documents

Obtaining ANIMA

ANIMA may be provided by the Technical Support Team.

20.3 Operations

20.3.1 Steps to Generate EGGs

1. Obtain Shard and transfer it to Matrix.

2. Obtain ANIMA.

3. Generate Egg via Validator management panel.

Reference Pages

Content Reference Page
Collect Shard Decompose ARCANA
Obtain ANM (ANIMA) for EGG Generation Get ANM (ANIMA)
Perform EGG Generation Generate EGGs
Explanation of Shard, EGG, ANIMA, and ARCANA ARCANA life cycle; ANICANA life cycle

Obtaining Shard and ANIMA

Shard and ANIMA may be provided by our technical support team.

20.3. Operations 41

ANICANA Technical Documents

20.3.2 Steps to Generate ARCANA

1. Determine the EGG to be used for ARCANA generation.

2. Determine the wallet address of the user to whom ARCANA will be granted.

3. Create signature data.

4. Generate ARCANA via the generation API.

Reference Pages

Content Reference Page
Obtain Information of EGGs for ARCANA Generation Get Owned EGGs
Link User Information and Wallet Address Get User Wallet; Wallet Connection
Create Signature Data for ARCANA Generation Generate Signature Steps
Interact with ARCANA Generation API ARCANA Generation Steps; ARCANA Generation API
Mechanism of ARCANA Generation ARCANA Generation Mechanism

42 Chapter 20. Quick Start for Publishers

CHAPTER

TWENTYONE

KNIGHTS OF THE ROUND TABLE

21.1 Permission-type Nodes Granting Approval for Validators

The Knights of the Round Table is a group of permission-type nodes with the authority to grant approval for Validators
who wish to join the ANICANA network.

Validators must receive network participation approval from at least one Knight.
(Excluding the Initial Validator)

21.2 Basic Structure

Knights of the Round Table has the roles of Queen, Knights, who can participate in blockchain consensus, and Pawns,
who do not participate in consensus.
The roles may change, and the nodes participating in the consensus change accordingly.
Below are the basic composition and role selection methods.

1. The Knights of the Round Table consist of a fixed number of 13 members.

2. The 13 members consist of one Queen and 12 Knights.

3. Knights are assigned a number from 1 to 12 by the Queen.

4. Knights cannot refuse the appointment by the Queen.

5. Validators must receive network participation approval from at least one Knight. Approved Validators are linked
to the number of the approving Knight and recorded on the blockchain.

6. The Queen has the authority to appoint and dismiss the 12 Knights.

7. The Queen automatically receives a certain percentage of ANM from Validators.

8. The Queen’s term lasts for 2 years (specified start and end dates).

9. When the Queen’s term expires, the next Queen is elected by the votes of the 12 Knights.

10. Only Validators have the right to become Knights.

11. Knights automatically receive a certain percentage of ANM from the Gas (ANM) paid by the Validators (Pub-
lishers) they have approved, based on the number assigned to the Knights.

43

ANICANA Technical Documents

44 Chapter 21. Knights of the Round Table

CHAPTER

TWENTYTWO

ROLES IN THE KNIGHTS OF THE ROUND TABLE

22.1 Roles

Each Validator holds one of the following roles or attributes. For details on the authority and appointment procedures
for each role, refer to the White Paper. An overview is provided below.

Role Maximum
Count

Authority Participation in Con-
sensus

EGG Genera-
tion

Queen 1 Nomination of Knights Yes Allowed
Knight 12 Approval of Validator Partic-

ipation
Yes Allowed

Pawns (or Candi-
dates)

209 N/A No Allowed

Unapproved
Nodes

Unlimited N/A No Not Allowed

• Queen

The Queen holds the authority to nominate and dismiss Knights for Validators participating in ANICANA. The Queen
is elected by a vote of 12 Knights, with a term limit of 2 years and a maximum of 2 re-elections.

• Knights

Knights have the authority to approve the participation of Validators who want to join ANICANA.
Validators appointed as Knights are assigned a Knight number.
Validators cannot reject an appointment by the Queen. When a new Queen is determined, Knights are newly
appointed by the Queen.

• Pawns

Pawns are nodes that has joined ANICANA or are candidates for joining ANICANA by being approved by one Knight.
New Validators who join are assigned the number of the Knight who approved their participation.

45

ANICANA Technical Documents

22.2 Receipt of ANM by Knights & Queen

The Queen automatically receives a certain percentage of ANM from Validators. Knights automatically receive a
certain percentage of ANM from the Gas (ANM) paid by the Validators (Publishers) they have approved, based on
their assigned number.

22.3 Queen’s Election

Only Queen and Knights, totaling 13 nodes, can participate in the blockchain consensus. These nodes propose and
approve new blocks. Roles may change, and the nodes participating in the consensus change accordingly.

• A new Queen is elected from the 12 Knights.

• There is no concept of candidacy in the Queen’s election, and Knights cannot vote for themselves.

• A Knight is elected as Queen by obtaining a minimum of 6 votes.

• If the minimum vote requirement is not met, the election will continue until someone achieves the minimum
required votes.

• During the absence of the Queen, the supply of ANM to Knights of the Round Table is temporarly suspended,
and the expected ANM will disappear. Therefore, the election of the Queen must be determined early.

22.4 Vote of No Confidence against the Queen

• With the agreement of three or more Knights, a vote of no confidence in the Queen can be submitted.

• When a vote of no confidence is submitted, Knights must vote either “confidence” or “no-confidence.”

• The Queen can be dismissed with the votes of 9 Knights of no confidence.

• A Validator who is removed from office due to a vote of no confidence becomes a regular Validator.

• Even if a Knight is reappointed by the new Queen, there is no guarantee that existing Knights will be reappointed.

• If a Knight is reappointed, they will receive ANM linked to the number (seat) of the reappointed Knight’s number,
even if the Knight’s number (seat) was previously different.

46 Chapter 22. Roles in the Knights of the Round Table

ANICANA Technical Documents

22.5 Opening of Validator (Candidate) Nodes

The total number of Queen, Knights, and Validators has a fixed upper limit, which is a maximum of 222. They are
sequentially opened according to a pre-designed schedule before reaching the maximum number.

Release Year Quantity Cumulative
2022 30 30
2023 100 130
2024 50 180
2025 25 205
2026 12 217
2027 5 222

22.5. Opening of Validator (Candidate) Nodes 47

ANICANA Technical Documents

48 Chapter 22. Roles in the Knights of the Round Table

49

ANICANA Technical Documents

CHAPTER

TWENTYTHREE

MECHANISM OF ARCANA GENERATION

50 Chapter 23. Mechanism of ARCANA Generation

ANICANA Technical Documents

23.1 ARCANA Generation

Users can generate ARCANA using the result values of playing content.
ARCANA can be used for nurturing tokens (PERSONA) provided by content owners or sold in the marketplace.
By incorporating ARCANA generation functionality, ARCANA generation can be done as a reward for using content.

For more details on generation, refer here.

For information on obtaining generation information, refer here.

23.2 Storage of ARCANA Generation Information (IPFS)

ARCANA generation information is stored on IPFS. Based on this information, interrupted ARCANA generation can
be resumed.

23.3 Storage of ARCANA Generation Information Index (Contract)

Storage of indexes to obtain IPFS mana information.

23.1. ARCANA Generation 51

../appendics/data-sign-text.html
../game-development/arcanaGeneratorInfo.html

ANICANA Technical Documents

52 Chapter 23. Mechanism of ARCANA Generation

CHAPTER

TWENTYFOUR

ARCANA LIFE CYCLE

24.1 ARCANA Life Cycle

1. The EGG tokens, which serve as the basis for generating ARCANA tokens, are generated by the Matrix contract.
To activate this Matrix contract, SHARDs are consumed.

2. Using the activated Matrix contract to generate EGG tokens. To generate EGG tokens, ANIMA is consumed.

3. Consuming EGGs to generate ARCANA.

4. By disassembling the generated ARCANA, SHARDs can be generated.

5. The generated SHARDs are used in step 1.

53

ANICANA Technical Documents

54 Chapter 24. ARCANA Life Cycle

CHAPTER

TWENTYFIVE

ANICANA LIFE CYCLE

55

ANICANA Technical Documents

25.1 Development Engineers / System Vendors, etc.

They mainly provide programs related to the development of MATRIX (hereinafter referred to as “MATRIX”), a smart
contract standard that runs on ANICANA, and various authentication for each Validator (content owner / publisher).
Development engineers design smart contracts based on development contracts for MATRIX from each content owner
(publisher) and earn income by broadcasting MATRIX using ARCANA SHARDs. In addition, in the circular flow
structure, they can receive ANIMA generated by specified tasks.

25.2 Content Owners / Publishers (Validators)

Publishers can develop content by linking their services with ANICANA. Using the environment (interface call) pro-
vided by the publishers, it is possible to generate ARCANA (NFT) on ANICANA using the results of the prepared
content. Publishers can also provide and sell their own unique tokens (PERSONA) to users and can earn revenue from
the sales of contents and PERSONAs, etc.

25.3 Users / Content Users

Users can purchase prepaid electronic money, etc., and charge for content. Users who use the content can generate
their own ARCANA (NFT) on ANICANA by sending the result value of the content to the Egg (environment) on
ANICANA. Additionally, they can nurture PERSONA by obtaining tokens (PERSONA) provided by content owners,
and they can earn revenue by selling ARCANA and PERSONA.

25.4 Secondary Marketplace / Market Operators

It is a service where NFTs and item data related to content on ANICANA can be bought and sold, mainly used for trading
ARCANAs and PERSONAs. When the offers of the seller and the buyer are matched (contracted), tha marketplace
receives the payment and tokens from the buyer, confirms that the payment has been made, and remits the payment and
tokens to the seller.

25.5 Extractors / Disassembling Engineers

They receiving the authentication code “ARCANA SHARD” inherent in ARCANAs, they will become buyers of AR-
CANAs that are sold on the secondary marketplace. Since there is demand for ARCANA SHARD among development
engineers, disassembling engineers can earn by selling the those ARCANA SHARDs to development engineers through
business contracts. Also, similar to development engineers, they can receive ANIMA generated by specified tasks in
the circular flow structure.

56 Chapter 25. ANICANA Life Cycle

CHAPTER

TWENTYSIX

VALIDATOR SETUP PROCEDURE

The initial setup of the Validator follows the steps outlined below. The ANICANA technical support team will assist
with the setup.

Step Details
Register with the Wallet Obtain a blockchain address for the Validator using the ANICANA wallet.
Prepare AWS Account Prepare an account for AWS (Amazon Web Services).
Validator Setup Set up various elements of the Validator on AWS.
Apply to Be a Validator Candidate Get approval as a participating node from the Knights of the Round Table.
Generate Square Key Obtain the Square Key required for EGG management.

Sure, here’s the translation:

57

ANICANA Technical Documents

58 Chapter 26. Validator Setup Procedure

CHAPTER

TWENTYSEVEN

SYSTEM CONFIGURATION

A single Validator is composed of the following components:

Component Description
Quorum Node The core ANICANA blockchain node
Key Management System System for managing Validator’s private keys
Validator Management UI UI for managing Validator nodes and EGGs
Explorer UI for viewing transactions on the ANICANA chain

27.1 Configuration Diagram

Fig. 1: ANICANA Consortium Chain

59

ANICANA Technical Documents

60 Chapter 27. System Configuration

CHAPTER

TWENTYEIGHT

ANICANA WALLET REGISTRATION

The ANICANA portal site provides a wallet user interface, allowing you to generate a wallet by authenticating with
your email address.

Please refer to the site URL for environment-specific information.

28.1 Wallet Registration Procedure

1. Click “sign up” on the ANICANA portal site to register as a user.

2. Agree to the terms of use and privacy policy.

3. Register a profile name.

4. Upload a profile picture.

5. Register your email address.

6. Enter the authentication code sent to your registered email address.

7. Register your phone number.

8. Enter the authentication code sent to your registered phone number.

61

ANICANA Technical Documents

62 Chapter 28. ANICANA Wallet Registration

ANICANA Technical Documents

28.1. Wallet Registration Procedure 63

ANICANA Technical Documents

64 Chapter 28. ANICANA Wallet Registration

ANICANA Technical Documents

9. Set a password.

10. User registration is complete, and the registration completion modal will be displayed.

11. Sign in with the registered information.

12. On the wallet connection screen, click “connect.”

13. Enter your email address and click “Continue with Email.”

14. Wallet registration is complete. You can check your wallet address and token balance on the My Wallet page.
Access the My Wallet page using the icon on the top right side.

28.1. Wallet Registration Procedure 65

ANICANA Technical Documents

66 Chapter 28. ANICANA Wallet Registration

ANICANA Technical Documents

28.1. Wallet Registration Procedure 67

ANICANA Technical Documents

68 Chapter 28. ANICANA Wallet Registration

CHAPTER

TWENTYNINE

PREPARING YOUR AWS ACCOUNT

Validator nodes are designed to be set up on Amazon Web Services (AWS). If you don’t already have an AWS account,
you can create one on the following website:

[Amazon Web Services](https://aws.amazon.com)

69

https://aws.amazon.com

ANICANA Technical Documents

70 Chapter 29. Preparing Your AWS Account

CHAPTER

THIRTY

VALIDATOR SETUP

Set up the Validator on Amazon Web Service.

• Set up the ANICANA node.

• Set up the Validator Management UI.

• Configure the secret key for the Validator.

※ This step is performed by the ANICANA technical support team.

Here is the translation:

71

ANICANA Technical Documents

72 Chapter 30. Validator Setup

CHAPTER

THIRTYONE

APPLY AS A VALIDATOR CANDIDATE

Apply to participate in the ANICANA network as a Validator. To apply, a specific amount of ANM tokens is required.

You must send an application transaction to the smart contract while having the required amount of ANM tokens in
your Validator account.

※ This step is performed by the ANICANA technical support team.

73

ANICANA Technical Documents

74 Chapter 31. Apply as a Validator Candidate

CHAPTER

THIRTYTWO

GENERATING SQUARE KEYS

Once your Validator application is accepted, you will need to generate Square Keys. You can generate up to five Square
Keys per Validator.

Square Keys are key tokens required to generate EGG, which is essential for creating ARCANA NFTs. These keys can
also be loaned to others.

Please note that this process will be carried out by the ANICANA Technical Support Team.

75

ANICANA Technical Documents

76 Chapter 32. Generating Square Keys

CHAPTER

THIRTYTHREE

CONTENT DEVELOPMENT OVERVIEW

By connecting your content to ANICANA, you can offer your content’s users the opportunity to generate ARCANA
NFTs. Depending on the results of their interactions with your content, users can acquire ARCANA NFTs with their
preferred images and names in their wallets.

ARCANA NFTs are generated from EGGs held by the publisher. Each EGG carries genetic information that influences
the “parameters” of the generated ARCANA NFTs. Additionally, when generating ARCANA from EGGs, content
providers must provide a seed value to the ARCANA NFTs, which also affects the “parameters.”

33.1 Implementation Flow

The necessary steps for preparation are as follows:

Step Details
Validator Setup Refer to Validator Setup.
Generate Square Key Refer to Generate Square Key.
Matrix Development Request Refer to Request Matrix Development.
Acquire ANIMA Refer to Acquire ANM (ANIMA).
Generate EGGs Refer to Generate EGGs.

Here are the tasks that can be performed in content development:

Step Details
Connect Content and Wallet Refer to Connect Wallet.
ARCANA Generation API Integration Refer to ARCANA Generation Flow.
LEVICA Payment Refer to LEVICA Payment.
Introduction of PERSONA Refer to PERSONA.

77

ANICANA Technical Documents

78 Chapter 33. Content Development Overview

CHAPTER

THIRTYFOUR

ARK.ONE ENVIRONMENT INFORMATION

Ark.one Environment List

Caution:

Ark.one is a community-provided testnet.
Due to its testing nature, transactions issued within the testnet are not guaranteed.
Please refrain from actions involving real money within the testnet.

34.1 Environment Information

Item Description
Chain ID 222221
JSON-RPC https://stgchains.anicana.org/

79

https://stgchains.anicana.org/

ANICANA Technical Documents

34.2 Contract Addresses

Contract Name Address
Anima 0x18F4a9E35d99E8E736f31eF11aA36F5D4ce7023c
Arcana 0xd7639Fc0cD23984b7F1F250803F0a7ad9D1eFAa8
Decomposer 0x837B0315d7dCB5ffaAc91b2dC085528c1fF75CE0
Egg 0x266Dc32CeabC06bC54469E8FAd9bE65efAfb66E8
EggBuilder 0xEcA31401263042B2Ec98457D0Ae1CaB9064f948E
Incubator 0x9C4EE916C997A469802A3F91ff729350A708C1cF
MatrixMaster 0x39BaC9943e4266096854029141867592E7958D3F
Shard 0x4Ca7323b9fB0EEc64ff23De4dCC67f434626FcEd
Square 0x8D3c73943b5ec3b64aeA43CD197F4214b0E70C38
ArcanaGeneratorInfo 0xCa59B3373F247F115D5A867CB0E2b18cAA43C96d
EggSupplement 0xB93181E64ea17B24a1a13dC31396CA86CE63B2c8
SquareSupplement 0x45BbC4fABbA1883A94BE0ff4Ab02d19B778d86bd
ContentsScopeApprover 0x9617Ba1f8a08B75b3d9E6fF4dE3E1233440969AB
AbsorbAuthority 0x36fddE6a2cCF18553B18e8C6b1A5535ee3B9cED1
AbsorbIntervalApprover 0x2D6296a287e4211c4b6c8232Baf0e3E084f6db7F
DrawChain 0x4B4DB59Fc8612D697D418CF9A6C39634E08B6589
Persona 0xD513eAd11bAfeE6b2bC08436a512FF3A8AC0265E
DrawAbilityLimitter 0x37Ef8Fa8995c43C26AC675C3A9DF317f3ed3A476
DrawPersonaCategoryLimitter 0xb9AA5Df1637d0cB103BA2F2D799AE878F082BBDF
DrawQuantityLimitter 0xF8BD4c1EEd08c48D086EB3bDeAE9eF03B05488aF
DrawFollowerLimitter 0xE4FDF41364930Fc4E43332E35d0F86478a0fa7D3
DrawCountLimitter 0xD1128FF78c7ba79B3f8E679387D6C0C53321482b
DrawPersonaLimitter 0xFcd33F400399f7E46dca668A4Ec36652e035c276
Boloodline 0xF062Fa680057396a9c6a336139E531E0FFaBfAd6

34.3 Contract ABI

Contract ABI
Egg Egg.json
ArcanaGeneratorInfo ArcanaGeneratorInfo.json
EggSupplement EggSupplement.json
SquareSupplement SquareSupplement.json
ContentsScopeApprover ContentsScopeApprover.json
AbsorbAuthority AbsorbAuthority.json
DrawChain DrawChain.json
Persona Persona.json
DrawAbilityLimitter DrawAbilityLimitter.json
DrawPersonaCategoryLimitter DrawPersonaCategoryLimitter.json
DrawQuantityLimitter DrawQuantityLimitter.json
DrawFollowerLimitter DrawFollowerLimitter.json
DrawCountLimitter DrawCountLimitter.json
DrawPersonaLimitter DrawPersonaLimitter.json
Square Square.json
Boloodline Bloodline.json

80 Chapter 34. Ark.one Environment Information

ANICANA Technical Documents

34.4 Interfaces

Interface Download
IDrawChainAuthorizer IDrawChainAuthorizer.sol
IAbsorbApprover IAbsorbApprover.sol

34.5 Libraries

Library File
genSig genSig.js
genSig.cfg.json genSig.cfg.json

Caution: Please set the chainId of the environment you are using in genSig.cfg.json. genSig.cfg.json is referenced
by genSig.js. Please place them in the same folder.

34.6 ANICANA Portal Site

• ANICANA Portal Site (Test Environment)

34.7 Call ARCANA Generation Page Script

Environment API Endpoint (base_url)
Testnet https://staging.anicana.org/

34.4. Interfaces 81

https://staging.anicana.org/
https://staging.anicana.org/

ANICANA Technical Documents

34.8 Check Status

Environment API Endpoint
Testnet https://api-staging.anicana.org/

34.9 Login Script

Environment API Endpoint (base_url)
Testnet https://staging.anicana.org/

34.10 LEVICA

Environment API Endpoint (base_url),URL
Staging http://levica-stg-apialb-1782828167.ap-northeast-1.elb.amazonaws.com
Merchant Management Screen http://stg.store.levica.io/login

34.11 IPFS

Item Description
API Server Endpoint https://stg.anicana-api.akqjt.io/
Swagger UI https://stg.anicana-api.akqjt.io/docs#/
IPFS gateway https://stg.anicana-api.akqjt.io/ipfs/

82 Chapter 34. Ark.one Environment Information

https://api-staging.anicana.org/
https://staging.anicana.org/
http://levica-stg-apialb-1782828167.ap-northeast-1.elb.amazonaws.com
http://stg.store.levica.io/login
https://stg.anicana-api.akqjt.io/
https://stg.anicana-api.akqjt.io/docs#/
https://stg.anicana-api.akqjt.io/ipfs/

CHAPTER

THIRTYFIVE

PRODUCTION ENVIRONMENT INFORMATION

List of Production Environments

35.1 Environment Information

Item Description
Chain ID 222222
JSON-RPC https://chains.anicana.org/

83

https://chains.anicana.org/

ANICANA Technical Documents

35.2 Contract Addresses

Contract Name Address
Anima 0x8C391195dC7Cb68D125EF35b73c859037603E548
Arcana 0x3923fCc1a12F385165bBF722c50A22B1d18335CD
Decomposer 0x73FD0678B2cD71be54EFBE069489a498Fdf820D2
Egg 0x9c382dd80F9D0865a7fC0953BaB6EdDb186FBaBa
EggBuilder 0x4cA9451003aD629e47d0C47d1164d6B66693811d
Incubator 0xb8726FE32cE1E0163b478b1ceeb0170CCFeA0794
MatrixMaster 0xAfC75DD63b30c55a3610ffa447c98c8c88CA1d0c
Shard 0xD1cF6C92DE56C791e036fA4d21914213c6CBaC8a
Square 0x52AB107d2c3Fb91aE2028d72105Aa8Bb5C55E667
ArcanaGeneratorInfo 0x338A498Ac956B67730c667efD02252bE1E2615b7
EggSupplement 0x4ed738d18e91baE47479b98302fA5936872C676e
SquareSupplement 0xa576401d922Ec79c7B6b93637f1BAd1A72D20CfF
ContentsScopeApprover 0x1000c42284Fa3BFD2F37280Fe1b61ab56bC894AA
AbsorbAuthority 0x4033696a12Ce2f6fF7ADDfD1D9F80C31Ea55C12A
AbsorbIntervalApprover 0x677c1cF5b1A41A0dCeb954beAA30F18228B2c521
DrawChain 0x894aB05BF700BA567530EBB1C2e8E5319DdB4233
Persona 0xCA6f428D07b00837C047bbeBe4a75F993C2288c1
DrawAbilityLimitter 0x13DaD62abfa9AA67f2AcFcDC48007c16205D36D6
DrawPersonaCategoryLimitter 0x1373c316d6DFC796F8C85b29160694AA8D229291
DrawQuantityLimitter 0xFC645cfC6cF992726D82183FF9E19B1c7E811f10
DrawFollowerLimitter 0x4c5443f1A3A774c4ef2F1ea5915510ff3D17BC2f
DrawCountLimitter 0x6d8Eb682dF8AC49A418a92Cba35b053e24735237
DrawPersonaLimitter 0xd05634254e70b4290368901831D753D6fB4f3eca
Boloodline 0x59436fc484aC84c9301e993F12B128df27B19276

35.3 Contract ABI

Contract ABI
Egg Egg.json
ArcanaGeneratorInfo ArcanaGeneratorInfo.json
EggSupplement EggSupplement.json
SquareSupplement SquareSupplement.json
ContentsScopeApprover ContentsScopeApprover.json
AbsorbAuthority AbsorbAuthority.json
DrawChain DrawChain.json
Persona Persona.json
DrawAbilityLimitter DrawAbilityLimitter.json
DrawPersonaCategoryLimitter DrawPersonaCategoryLimitter.json
DrawQuantityLimitter DrawQuantityLimitter.json
DrawFollowerLimitter DrawFollowerLimitter.json
DrawCountLimitter DrawCountLimitter.json
DrawPersonaLimitter DrawPersonaLimitter.json
Square Square.json
Boloodline Bloodline.json

84 Chapter 35. Production Environment Information

ANICANA Technical Documents

35.4 Interfaces

IF Download
IDrawChainAuthorizer IDrawChainAuthorizer.sol
IAbsorbApprover IAbsorbApprover.sol

35.5 Libraries

Library File
genSig genSig.js
genSig.cfg.json genSig.cfg.json

Caution: Please set the chainId of the environment you are using in genSig.cfg.json. Also, genSig.cfg.json is
referenced by genSig.js, so place it in the same folder.

35.6 ANICANA Portal Site

• ANICANA Portal Site (Production Environment)

35.7 ARCANA Generation Page Invocation Script

-table::

header-rows
1

align
center

“Environment”, “API Endpoint (base_url)” “Production”,”https://anicana.org/”

35.4. Interfaces 85

https://anicana.org/
https://anicana.org/

ANICANA Technical Documents

35.8 check status

Environment API Endpoint
Production https://api.anicana.org/

35.9 Login Script

Environment API Endpoint (base_url)
Production https://anicana.org/

35.10 LEVICA

Environment API Endpoint (base_url)
Production http://levica-prod-apilb-1703316262.ap-northeast-1.elb.amazonaws.com

35.11 IPFS

Item Description
API Server Endpoint https://chainapi.octillion.jp/
Swagger UI https://chainapi.octillion.jp/docs#/
IPFS gateway https://ipfs.octillion.jp/

86 Chapter 35. Production Environment Information

https://api.anicana.org/
https://anicana.org/
http://levica-prod-apilb-1703316262.ap-northeast-1.elb.amazonaws.com
https://chainapi.octillion.jp/
https://chainapi.octillion.jp/docs#/
https://ipfs.octillion.jp/

CHAPTER

THIRTYSIX

USER WALLET RETRIEVAL

While it is not necessary for content-side systems to directly interact with the blockchain, there may be a need to obtain
user wallet information.

Therefore, we provide a method for associating user information held on the content side with wallet address information
by performing owner authentication of the address through ANICANA wallet integration.

36.1 User Registration Flow

The following user registration flow is expected:

1. Users register an account with the content.

2. During account registration, user’s wallet address will be retrieved when connecting the wallet. If the user does
not have a wallet, one will be automatically generated during the initial connection.

3. Link the content account with the user’s address and maintain the information on the content side.

4. Authentication of the address holder can be achieved through wallet integration, enabling login to the content
through address authentication instead of methods like password authentication. This allows for a Single Sign-On
(SSO) that can be shared with other content providers.

87

ANICANA Technical Documents

88 Chapter 36. User Wallet Retrieval

CHAPTER

THIRTYSEVEN

WALLET CONNECTION

37.1 API Specification

37.1.1 Login Script

Please refer to the respective environment information pages for environment details.

Sample Generation Script:

<script src="https://staging.anicana.org/login.js" id="anikana_login_script" data-call-
→˓id="9999999" data-sign-text="HELLO" data-callback="https://staging.anicana.org/test_
→˓login.html" data-logout="true" ></script>
<div style='text-align: center'><button class='' onclick='__open_portal_login()'>Login</
→˓button></div>

• Omit unnecessary optional parameters along with the key of the parameter.

Pa-
rame-
ter

re-
quired/optional

Type Description

id re-
quired

String anikana_login_script (Do not change)

src re-
quired

URL {endpoint}/login.js (Refer to the endpoint in the environment information page)

data-
call-id

re-
quired

Num-
ber

A unique number for each publisher. This is used on the content side to determine where
the user is returning from, among other functions. If this information is not specifically
needed, 9999999 can be used.

data-
sign-
text

op-
tional

String Text to be signed (one-time token)

data-
callback

re-
quired

URL Callback URL. After logging in, callId, sign, and address (user’s wallet address) will be
added as GET parameters and redirected.

data-
logout

op-
tional

BooleanIf true, it forces a re-login. If false, it automatically logs in if there is session information,
and forces a re-login if there isn’t. If not specified, it is treated as false.

data-
referral-
code

op-
tional

String Set the referral code passed from the affiliate.Fixed at 64 alphanumeric characters.

• Sample of direct URL generation

Direct URL generation:

89

ANICANA Technical Documents

{endpoint}/login/idms/{:call-id}/{sign-text}?r={callback}&logout={logout}

Direct URL generation (with referral-code):

{endpoint}/login/idms/{:call-id}/{sign-text}?r={callback}&logout={logout}&referral_
→˓code=XXXXX

- data-sign-text
This can be configured for advanced security implementation.
For details, refer to here.

90 Chapter 37. Wallet Connection

../appendics/data-sign-text.html

CHAPTER

THIRTYEIGHT

ARCANA GENERATION PROCESS

ARCANA generation is typically performed through the integration of IPFS and the ANICANA Chain smart contract.

• Upload token image to IPFS

• Generate and upload metadata JSON to IPFS

• Generate and possess EGGs

• Generate a signature to grant permission to open the possessed EGGs to users

• Transaction signing by the user

• Execution of the ARCANA generation transaction

Implementing these processes independently on the content side can be complex, so the ANICANA portal provides
API support for these operations. Content providers can embed a script tag in their frontend and provide the necessary
parameters to navigate users to the ARCANA generation page and facilitate ARCANA generation.

38.1 Integration Flow with ARCANA Generation Page (API)

91

ANICANA Technical Documents

38.2 ARCANA Generation on the Ark.one

ARCANA generation on the Ark.one can be performed using the following steps:

1. Register on the Validator management page with an email address and create a wallet.

2. Obtain the private key of the wallet address generated in the previous step. Use this private key to create a
signature. The privatekey can be checked from the console of the browser’s development tools by logging in to
the Validator management page as the target user.

3. In the Ark.one environment, EGGs are not generated from the Validator management page but are issued by the
technical support team with administrative privileges.

92 Chapter 38. ARCANA Generation Process

CHAPTER

THIRTYNINE

ARCANA GENERATION API

You can invoke the ARCANA generation screen by embedding the following script tag in your content.

39.1 API Specifications

39.1.1 Script to Invoke ARCANA Generation Page

Sample Generation Script:

<script src="https://staging.anicana.org/arcana.js" id="gen_arcana_script" data-
→˓requestid="9999999" data-toaddr="0xFf5BC900110f5c4eb6Ce2faf2081B4151655B3f3" data-seed=
→˓"10000" data-eggid="10" data-signature=
→˓"0xdfe893d3906b31c0cfcc05b05387c7cf3bf31524caeac2fb5e3d7b9d144dbc9550a9ce41d92ad4c070c6f34c38ba8329d8d1b32818f2d01a637758f61b012a211c
→˓" data-callback="https://staging.anicana.org/test_button.html" data-logout="true" ></
→˓script>
<div style='text-align: center'><button onclick="__go_to_arcana_generator()">Generate␣
→˓ARCANA</button></div>

93

ANICANA Technical Documents

Pa-
ram-
eter

re-
quired/optional

Type Description

id re-
quired

String gen_arcana_script (Do not change)

src re-
quired

URL {endpoint}/arcana.js (Refer to the environment information page for the endpoint)

data-
eggid

re-
quired

Num-
ber

The EGG eggid held by the publisher.

data-
seed

re-
quired

Num-
ber

Seed

data-
signature

re-
quired

String Publisher’s signature. Refer to the signature generation procedure page.

callback-
url

op-
tional

URL Callback URL. The requestId and txHash will be added as GET parameters and redirected.
If you specify http://test.com, it will become http://test.com?requestId=1&txHash=xxxxx.
You can also omit the callback, in which case a button will be displayed to navigate to the
wallet page on the portal.

data-
requestid

re-
quired

Num-
ber

Any number specific to the publisher (0 ~ 18446744073709551615). Used in check status.

data-
toaddr

re-
quired

ad-
dress

Wallet address for distributing ARCANA

data-
logout

op-
tional

booleanIf true, forcefully trigger a re-login. If false, automatically log in if there is a session, other-
wise, prompt for re-login. If not specified, it is the same as false.

data-
symbol

op-
tional

String Symbol that can be set by the publisher.

data-
manaInfo

op-
tional

String Text that can be set by the publisher. It is envisaged to add value to ARCANA by writing
things like user experience information or encrypted personal information in content.

data-
manaValue

op-
tional

Num-
ber

Numeric value that can be set by the publisher.

data-
manaAddress

op-
tional

ad-
dress

Specify the manaAddress of the interrupted ARCANA generation.

To directly call the generation page, do as follows:

{endpoint}/arcana-gen/{eggId}/{seed}/{signature}/{requestId}/{toAddress}?r={callbackUrl}
→˓&logout=true

(with mana information)
{endpoint}/arcana-gen/{eggId}/{seed}/{signature}/{requestId}/{toAddress}/{symbol}/
→˓{manaInfo}/{manaValue}?r={callbackUrl}&logout=true

(with manaAddress specified)
{endpoint}/arcana-gen/{manaAddress}

supplement

• When calling the generation page directly and not specifying symbol, manaInfo, and manaValue, please insert
null in the respective locations.

• The maximum number of “manaInfo” characters is limited to the total of all request headers. Although there are
some conflicts with other parameters, the maximum number of characters for symbol, manaInfo, and manaValue
together should be 800 or less for Japanese and 7200 or less for single-byte alphanumeric characters.

94 Chapter 39. ARCANA Generation API

http://test.com
http://test.com?requestId=1&txHash=xxxxx

ANICANA Technical Documents

• The text to be displayed in the mana information is currently not line breakable.

39.1.2 Check Status

Retrieve the status of ARCANA generation.

Method:

GET

Endpoint:

/api/arcana-status/{wallet_address}/{request_id}

Parameter Description
wallet_address Address of the signer (address of the EGG holder)
request_id Request ID specified when calling the ARCANA generation API

Sample response

{
"data": {

"status": "done",
"transaction_id":

→˓"0x2e35551b1bf7bb6942610be99dcf60fafe804f167c19a2070c45ff1a0a7f50de"
},
"status": "success"

}

Value of status (inside data)

Status Description
no_transaction User has not yet completed the ARCANA generation process. (Including cases where the user

exited)
transac-
tion_created

ARCANA generation transaction has been sent to the blockchain but the result is not confirmed
yet.

error Transaction failed for some reason and terminated (ARCANA has not been generated).
done ARCANA has been generated and the process completed successfully.

Error response

{
"message": "request_id"

}

Note:

39.1. API Specifications 95

ANICANA Technical Documents

In case of error, a 404 status will be returned.

39.1.3 Flow to ARCANA Generation

The process for ARCANA generation follows a flow similar to the following:

1. Validator Setup.

2. Granting SHARD, ANIMA

3. Registering Matrix, Activating Matrix

4. Generating EGG in Validator Management Interface.

5. Obtaining the private key of the Validator from a dedicated site.

6. Creating a signature using the obtained private key.

7. Generating ARCANA using the EGG and signature created above.

In the staging environment, you can perform the following steps:

1. Register with an email address in the Validator Management Interface. A wallet will be created.

2. The privatekey is obtained by using the privatekey of the walletaddress issued above. privatekey can be checked
from the console of the development tools in the browser by logging in to the Validator UI as the target user. Use
the private key displayed with “0x” added at the beginning for creating the signature.

3. EGGs in the staging environment are issued by administrative authority, not by generating them from the Val-
idator UI.

4. Set the issued EGG’s ID in the eggid parameter. You can check the EGGs you own in the Validator Management
Interface.

96 Chapter 39. ARCANA Generation API

CHAPTER

FORTY

GET A LIST OF OWNED EGGS

Sample to retrieve a list of EGGs currently owned by the user.

Please refer to the contract, JSON-RPC, and ABI files for test environment information.

Caution: Please use web3 version 1.9.8.

Example of Retrieving a List of EGGs (JavaScript):

var Web3 = require('web3');
var eggAbi = require("./egg.json");

const web3 = new Web3("https://stgchains.anicana.org/"); // Specify the JSON-RPC URL

const eggAddr = "0xb374640Ca3E3DA6F836ca8c60130fCAE2da3B929"; // Specify the address of␣
→˓the Egg contract
const holderAddr = "0xe092b1fa25DF5786D151246E492Eed3d15EA4dAA"; // Address for which␣
→˓you want to check the EGG ownership

const eggContract = new web3.eth.Contract(eggAbi, eggAddr);

const listOfEggs = async () => {

var balance = await eggContract.methods.balanceOf(holderAddr).call();
console.log(balance);

var eggIds = [];
for (var i = 0; i < balance; i++) {

var res = await eggContract.methods.tokenOfOwnerByIndex(holderAddr, i).call();
eggIds.push(res);

}

console.log(eggIds);
}

Batch Retrieval of Owned EGGs Function:

@param account Address of the account holding the tokens
@param index Index number of the token to retrieve
@param limit Maximum number of tokens to retrieve

(continues on next page)

97

ANICANA Technical Documents

(continued from previous page)

@return Array of token information
// You can retrieve up to around 1000 tokens in one call. The limit depends on the state␣
→˓of the smart contract, but if you exceed the limit, an error will be returned.
function tokenOfOwnerByIndexBatch(address owner, uint256 index, uint256 limit) public␣
→˓view returns (uint256[] memory)

98 Chapter 40. Get a List of Owned EGGs

CHAPTER

FORTYONE

SIGNATURE GENERATION PROCEDURE

In order to generate an ARCANA token, the Validator (on the content side) needs to allow the user to convert their EGG
token into ARCANA. Additionally, during this process, it is necessary to embed the result value of the content into the
ARCANA token without tampering with this value. To achieve this, the following procedure is performed: the content
side creates a signature, and the user uses this signature to send a transaction. The private key of the eggid owner can
be checked from the console of the development tools in the browser by logging in to the Validator UI as the target user.

41.1 Creation of Signature Data for ARCANA Generation

To create signature data, the following data is required.

Based on the above data, create the dataToBeSigned, which is the data to be signed, using the following steps:

const genSig = require("./genSig.js");

const signature = genSig.signForIncubate(eggid, toAddr, seed, contract, privateKey);

41.2 Creation of Signature Data for PERSONA Distribution

Based on the above data, create the signature data using the following steps:

const genSig = require("./genSig.js");

const sigInfoApp = genSig.signForPersonaApprove(to, tokenId, contract, privateKey);

const sigInfoAppNonce = sigInfoApp.nonce;
const sigInfoAppSign = sigInfoApp.sign;

const sigInfoTrans = genSig.forPersonaTransferFrom(from, to, tokenId, contract,␣
→˓privateKey);

const sigInfoTransNonce = sigInfoTrans.nonce;
const sigInfoTransSign = sigInfoTrans.sign;

99

ANICANA Technical Documents

41.3 Libraries

Refer to the environmental information.

100 Chapter 41. Signature Generation Procedure

CHAPTER

FORTYTWO

LEVICA PAYMENT

This is an electronic money application available for prepaid payments which is used for various products and integrated
services deployed on the ANICANA network.

42.1 API URL Format

The URI for the LEVICA REST API follows the format below:

${base_url}/v${version}/${resource}.

Field Description
base_url URL of the server hosting the API. ‘base_url’ is the same for all APIs.
version API version.
resource Unique name assigned to each API.

42.2 Environment Information

Please refer to each environment information page.

42.3 Request Authentication

The LEVICA system exchanges data in a RESTful format.

• Request Authentication

To access resources of the system using the REST API, merchant authentication is required first. Authentication is
performed using the merchant’s clientId and clientSecret. The system provides a login REST API to execute the au-
thentication. The clientId and clientSecret are passed to the system with this request. The system compares whether the
clientId and clientSecret match the values in the database and checks them. If they match, the system creates an access
token specific to the merchant, and these tokens are returned to the caller as a response to the authentication request.

101

ANICANA Technical Documents

Access tokens contain the necessary merchant information, and these access tokens need to be stored. Therefore, when
the system receives an access token with a REST API request, it can verify the merchant’s authentication information.

Pattern 1

Header Key Type Required Description
Content-Type String Yes Content type of the request body.
Accept String No Indicates the content type.

Pattern 2

Header Key Type Required Description
Authorization String Yes Access token.
Content-Type String Yes Content type of the request body.
Accept String No Indicates the content type.

For browsers, the device type is not required.
If the API has an option for file upload, the Content-Type will be ‘multipart/form-data.’ For other POST/PUT APIs,
the Content-Type will be ‘application/json.’

Caution: You must first apply for merchant registration with LEVICA and obtain the clientId and clientSecret.

102 Chapter 42. LEVICA Payment

ANICANA Technical Documents

42.4 Integration Flow with LEVICA

42.5 Main APIs for Integration

Listed below are the main APIs used to implement LEVICA Payment.

• Merchant Login

42.4. Integration Flow with LEVICA 103

ANICANA Technical Documents

Request URI ${base_url}/$v{version}/merchant/login
Method post
Objective Log in as a merchant
Request
Request Header Content-Type: application/json

Accept: application/json

Request Parameters Field Type Required Description
clientId String Yes

Merchant clientId
The value provided
by the issuer when
the merchant is
registered with
LEVICA

clientSecret String Yes

Merchant
clientSecret
The value provided
by the issuer when
the merchant is
registered with
LEVICA

Sample request
body

{
“clientId”: “6779ef20e75817b79602”,
“clientSecret”:
“GBAyfVL7YWtP6gudLIjbRZV_N0dW4f3xETiIxqtokEAZ6FAsBtgyIq0MpU1uQ7J08xOTO2zwP0OuO3
pMVAUTid”
}

Response
Success Response Http status code: 200

{
“accessToken”: {
“token”: “VVN-
FUl9BQ0NFU1NfVE9LRU4jTVdNMk16Z3hPRFUxTnpNeU1HRXlNVFE1TXpZMU16QTBOMk0yTldWaU9XUm1PVG

d6TmpjNFpRPT0jMjAyMi0xMC0yNyAxMTo1Mzo1MS4zNzEjMjAyMi0xMC0yNiAxMTo1Mzo1MS4zNzEjLTg1Mjk1NzkyNA==”,
“expiredAt”: “2022-10-27T06:23:51.371+00:00”

},
“merchantId”: 33,
“merchantName”: “Merchant Name New s”,
“callBackUrl”: “https://merchanttest.com”,
“clientId”: “1c63818557320a21493653047c65eb9df983678e”,
“address”: “0x1563929dcbcaea559734d78a0e864ee680649726”

}

Error Response Http status code: 400, Unauthorized
{

“error”: “email or password is incorrect”
}

104 Chapter 42. LEVICA Payment

https://merchanttest.com

ANICANA Technical Documents

• Transaction Request

42.5. Main APIs for Integration 105

ANICANA Technical Documents

Request URI ${base_url}/$v{version}/merchant/transaction
Method post
Objective Transaction Initiation
Request
Request Header Content-Type: application/json

Accept: application/json
Authorization: merchant_access_token

Request Parameters Field Type Required Description.
amount Long Yes Amount of transac-

tion
isLock byte No

0 : No lock (default
setting)
1 : lock

type byte Yes

1 : Generate QR
Code
2 : Generate deep
link URLs

refarralCode String No

Set the referral code
passed from the
affiliate
Fixed 64
alphanumeric
characters

Sample request
body

{
“amount”: 10000,
“isLock”: 1,
“type”: 1
“type”: 1,
“refarralCode”: “123456789101234567891234567890ASDFGHJKLZXCVBN-
MASDFGHJKASDFGHJKAS”

}

Response
Success Response Http status code: 200

type=1
{

“type” : 1,
“hasLock” : 1,
“data” : “<Base64_Encoded_String>”,
“draftTransactionId” : “D102656693ac3ca6e0cdafbfe89ab99”,
“value” :”<Deep Link URI>”,
“createdDate” : “2022-09-1T18:25”

}

QR code in Base64 Encoded Value
//Decoding base64 values provides QR codes in image format

type=2
{

“type” : 2,
“hasLock” : 1,
“data” : “<Web-URI-to-make-payment>”,
“draftTransactionId” : “D102656693ac3ca6e0cdafbfe89ab99”,
“value” : null,
“createdDate” : “2022-09-1T18:25”

}

Error Response Http status code: 401, Unauthorized
{
“message”: “Invalid access token”,
“code”: “6001”
}

Http status code: 400, Bad Request
{
“message”: “Amount should be greater than zero”,
“code”: “1003”
}

Http status code: 400, Bad Request
{
“message”: “Invalid Lock status”,
“code”: “1002”
}

{
“message”: “Invalid Payment type”,
“code”: “1001”
}

Http status code: 404, Not Found
{
“message”: “Merchant Address not found”,
“code”: “2005”
}

Http status code: 400, Bad Request
{
“message”: “No user found”,
“code”: “1005”
}

106 Chapter 42. LEVICA Payment

ANICANA Technical Documents

• Get Transaction Status

Request URI ${base_url}/$v{version}/merchant/transaction/{transactionID}/status
Method get
Objective | Get transaction status
Request
Request Header Content-Type: application/json

Accept: application/json
Authorization: merchant_access_token

Request Parameters Field Type Required Description.
transactionID String Yes Draft-TransactionID

obtained from
TransactionRe-
questAPI

Sample request
body

Empty

Response
Success Response Http status code: 200

{
“tempTransactionID”:
“D5a321108871ea447db69a56404ad65ae46d0073bc68fa91fc60f579f8305ec4b”,

“transactionId”:
“4833ea425b55599d97dd700878e0c3a4bf5e276e70edb8636344aa434447bd56”,
“isLock”: 1,
“type”: 1,
“status”: 3, // 1 => pending, 2 => Payment completed, 3=> Transaction
completed successfully,

4=> transaction fail, 5=> transaction canceled.
Additional status information is provided outside the column.

“amount”: “500”,
“fromAddress”: “0x5J3mBbAH58CpQ3Y5RNJpUKP”,
“toAddress”: “0xPKUpJNR5Y3QpC85HAbBm3J5”,
“transactionCreateDate”: “2022-08-16T09:21:49.000+00:00”,
“transactionPaymentDate”: “2022-08-16T10:21:49.000+00:00”,
“transactionCompleteDate”: “2022-08-17T09:21:49.000+00:00”

}

Error Response Http status code: 401, Unauthorized
{
“message”: “Invalid access token”,
“code”: “6001”
}

Http status code: 404, Not Found
{
“message”: “No transaction found”,
“code”: “1006”
}

42.5. Main APIs for Integration 107

ANICANA Technical Documents

※If status is 2 or more, the settlement can be considered complete; if status 4 or 5 we can conclude that there is no
problem with the content side because the content is at the blockchain level.

42.6 Testing in the Staging Environment

In the staging environment, you can perform tests by charging the balance using test card numbers. The payment system
uses Stripe, so you can use the following card numbers:

Card Company Card Number Expiration
Date

Security Code Other Form
Fields

Visa 4242 4242 4242
4242

Valid future date Any 3-digit security
code

Any value

Visa (Debit) 4000 0566 5566
5556

Valid future date Any 3-digit security
code

Any value

Mastercard 5555 5555 5555
4444

Valid future date Any 3-digit security
code

Any value

Mastercard (Debit) 5200 8282 8282
8210

Valid future date Any 3-digit security
code

Any value

Mastercard (Pre-
paid)

5105 1051 0510
5100

Valid future date Any 3-digit security
code

Any value

American Express 3782 822463 10005 Valid future date Any 4-digit security
code

Any value

108 Chapter 42. LEVICA Payment

CHAPTER

FORTYTHREE

PERSONA OVERVIEW

PERSONA is an NFT that plays the role of a catalyst to trigger specific smart contracts on ANICANA. The smart
contracts are ERC721 compliant.
They are primarily created by publishers and offered to Consumer (content users).
The methods of offering may vary, including paid options and rewards in events.
The generation of PERSONA requires both SQUARE and ANIMA.
PERSONA has internal values, and Validators can set these internal values when generating PERSONA.

43.1 PERSONA Growth / Object Absorption Contract

PERSONA can execute smart contracts to absorb (Absorbing) ARCANA objects (tokens) up to a specified number of
times.
Depending on the internal values of the objects being absorbed, the internal values of the absorbed PERSONA
change, and the absorbed objects disappear.
This characteristic allows for the creation of various added values.

PERSONAs with high FORCE internal values primarily target ARCANAs with low FORCE values.
When a low-FORCE PERSONAs absorb a high-FORCE ARCANAs, there is a higher probability that the internal
values of the absorbing PERSONAs will deteriorate.
Consumer can enjoy the changes resulting from object absorption, and they can also utilize PERSONAs for collecting
or selling high-ability PERSONAs on secondary marketplaces.

43.2 DrawChain / Contract to Retrieve Specific Data

PERSONAs come with smart contracts called DrawChain, and when DrawChain is activated for SQUAREs,
Validators can retrieve specified data (services) with the designated PERSONA.
The internal values of PERSONA can be set as conditional criteria to draw (retrieve) the data (services).
The usage history of DrawChain is recorded on the blockchain, and it can be limited, such as one-time use in the same
event.

109

ANICANA Technical Documents

By developing PERSONA to increase its abilities (internal values), players can engage in secondary trading.
Publishers can distribute limited items within their content events using DrawChain on SQUARE. This enables a
variety of productions.
Publishers can utilize DrawChain to distribute various items such as NFTs, tickets, cryptocurrencies, and points,
creating attractive events.

110 Chapter 43. PERSONA Overview

CHAPTER

FORTYFOUR

PERSONA IMPLEMENTATION PROCEDURE

The implementation of PERSONA follows the following steps.

Step Details
Setting up Absorb Refer to Setting up Absorb.
Setting up DrawChain Refer to Setting up DrawChain.
Generating and Distributing PERSONA Refer to Minting PERSONA.
User Utilization of PERSONA Refer to User Utilization of PERSONA.

111

ANICANA Technical Documents

112 Chapter 44. PERSONA Implementation Procedure

113

ANICANA Technical Documents

CHAPTER

FORTYFIVE

ABSORBING

45.1 Overview Diagram

114 Chapter 45. Absorbing

ANICANA Technical Documents

45.2 Setting Absorbing Conditions

Publishers can set the absorption targets for PERSONA. (Unlimited targets are also possible)

45.2.1 Prerequisites

Reverting occurs if the prerequisites are not met.
The predator (PERSONA) must own the address calling the function.
It must be a combination of predator (PERSONA) and prey (ARCANA) permitted by AbsorbAuthority.

45.2.2 Restricting the Execution of absorb()

As mentioned in the prerequisites, absorb() must be a combination of predator and prey permitted by
AbsorbAuthority.
To restrict the execution of absorb(), you need to configure AbsorbAuthority.
AbsorbAuthority can operate contracts that inherit multiple IAbsorbApprover interfaces for each PERSONA category
of Predator.
Except for numAbsorbApprovers, only the owner of the square key can operate the following functions.

The steps are as follows.

Create a contract to restrict the execution of absorb()

Create a contract that implements the IAbsorbApprover interface (IAbsorbApprover.sol):

@param presetId Preset number (freely defined in the implementation contract)
@param predator PERSONA Id on the absorbing side
@param prey PERSONA Id on the absorbed side
@return true: absorbable, false: not absorbable
function approveAbsorb(uint256 presetId,uint256 predator,uint256 prey) external view␣
→˓returns (bool)

Refer to the environment information for the interface file.

Register the created contract

Register the contract using the function (AbsorbAuthority.sol):

@param contentsId Content ID (contentsId & SquareKey)
@param contractAddr Contract address that inherits IAbsorbApprover
@param presetId The presetId of contractAddr, the usage of preset Id depends on the␣
→˓implementation contract of IAbsorbApprover.
@return Index of the AbsorbApprover array for each registered Content ID
function addAbsorbApprover(uint32 contentsId,address contractAddr,uint256 presetId)␣
→˓public returns (uint256)

45.2. Setting Absorbing Conditions 115

ANICANA Technical Documents

45.2.3 Other Functions for Setting absorb() Conditions

Delete registered ApproverInfo (AbsorbAuthority.sol)

@param contentsId Content ID (contentsId & SquareKey)
@param idx Index of the AbsorbApprover array for each Content ID
function removeApprover(uint32 contentsId,uint256 idx)

Replace registered ApproverInfo (AbsorbAuthority.sol)

@param contentsId Content ID (contentsId & SquareKey)
@param idx Index of the AbsorbApprover array for each Content ID
@param contractAddr Contract address that inherits IAbsorbApprover
@param presetId The presetId of contractAddr, the usage of preset Id depends on the␣
→˓implementation contract of IAbsorbApprover.
function replaceApprover(uint32 contentsId,uint256 idx,address contractAddr,uint256␣
→˓presetId)

Get the number of registered AbsorbApprovers for each Content ID (AbsorbAuthority.sol)

@param contentsId Content ID (contentsId & SquareKey)
@return Number of registered AbsorbApprovers for each Content ID
function numAbsorbApprovers(uint32 contentsId) public view returns (uint256)

AbsorbApprover list for each Content (AbsorbAuthority.sol)

@notice Available with approverList(contentsId)
mapping(uint32 => ApproverInfo[]) public approverList;

ApproverInfo

struct ApproverInfo {
@notice Address of the AbsorbAprover contract
address approver;
@notice Preset ID of the AbsorbAprover contract to be used
uint256 presetId;

}

116 Chapter 45. Absorbing

ANICANA Technical Documents

Get SquareKey from arcanaId (EggSupplement.sol)

@param arcanaId ARCANA token ID
@return SquareKey associated with arcanaId
function arcanaToSquareKey(uint256 arcanaId) external view returns (uint256)

45.2.4 Implemented IAbsorbApprover

Currently, the following contracts implementing the IAbsorbApprover interface are available.
To enable them, you need to register the contracts with AbsorbAuthority using addAbsorbApprover().

Contracts Limited by Square Key

(ContentsScopeApprover.sol)
A contract that limits absorbability based on the square key associated with PERSONA and ARCANA

PERSONA of the predatorContents specified in the function can only target ARCANAs of the preyContents specified
category.
To enable absorbing restrictions by ContentsScopeApprover, add restrictions with the following function and register
the contract with AbsorbAuthority.

To add restrictions with ContentsScopeApprover, use the following function.:

@notice Set the absorbability list for each content
@param predatorContents Predator (PersonaId)
@param preyContents Prey (ArcanaId)
@param mask 0xffff0000 (the lower 16 bits are unused)
@param arc Always set to true and 0
function setAbsorbScope(uint32 predatorContents,uint32 preyContents,uint32 mask,uint8 ␣
→˓arc) public;

Contract for Time Restriction on Re-execution

(AbsorbIntervalApprover.sol)
A contract that prevents the execution of absorbing until a certain period has elapsed since the previous absorbing.
Set the time in milliseconds for re-absorbability when registering the contract with AbsorbAuthority using the
presetId.

45.2. Setting Absorbing Conditions 117

ANICANA Technical Documents

118 Chapter 45. Absorbing

CHAPTER

FORTYSIX

IMPLEMENTATION OF DRAWCHAIN

46.1 Overview

119

ANICANA Technical Documents

46.2 Setting Up DrawChain

You can configure the conditions for running DrawChain.
Configuration is possible by registering a contract that inherits the IDrawChainAuthorizer interface.

Functions for Publishers

1. Create a contract to set conditions for running DrawChain:

Create a contract that implements the IDrawChainAuthorizer interface (IDrawChainAuthorizer.sol):

@param drawChainId DrawChain ID
@param presetId Preset number (freely defined within the implementation contract)
@param personaId PERSONA Id
function authorizeDraw (uint256 drawChainId, uint256 presetId, uint256 personaId)␣
→˓external view returns (bool);

Refer to the environment information for the interface file.

2. Register DrawChain

Register the contract created in step 1 in AuthorizerInfo. Set the address of the created contract and presetId in Autho-
rizerInfo. The usage of presetId can be freely defined within the implementation contract.

Function to register DrawChain (Drawchain.sol):

@param squareKey SquareKey associated with DrawChain
@param _authorizers List of authorizers
@return DrawChain ID
function newDrawChain(uint256 squareKey, AuthorizerInfo[] calldata _authorizers) public␣
→˓returns (uint256)

AuthorizerInfo[]:

struct AuthorizerInfo {
@notice Address of the IDrawChainAuthorizer contract
address authorizer;
@notice Preset ID of the IDrawChainAuthorizer contract
uint256 presetId;

}

46.2.1 Setting Active and Inactive States

During the initial registration, draw capability is set to true.
DrawChain creators can control the execution of draw. They can change the state to active (true) or inactive (false).

Function to set the active and inactive states of DrawChain (Drawchain.sol):

@param drawChainId DrawChain ID @param active true: draw is possible, false: draw is not possible
function deactivateDrawChain(uint256 drawChainId, bool active) public;

120 Chapter 46. Implementation of DrawChain

ANICANA Technical Documents

46.3 Other DrawChain Functions

Returning an Array of DrawChain IDs for Which a Specific PERSONA Can Draw (Drawchain.sol):

@param from Starting ID of DrawChains to inspect (inclusive)
@param until Ending ID of DrawChains to inspect (inclusive)
@param limit Limit the search to this many successful DrawChains (maximum number of␣
→˓elements to return in the array)
@param personaId PERSONA ID to draw DrawChains
@return Array of DrawChain IDs where draw is successful
function availables(uint256 from, uint256 until, uint256 limit, uint256 personaId)␣
→˓public view returns (uint256[] memory)

Regarding Specified Ranges

Be cautious when using availables() to search over a wide range, as it may result in gas exhaustion.

Getting DrawChain Information (Drawchain.sol):

@param fromId Starting DrawChain ID
@param count Number of DrawChain information to retrieve
@return Array of DrawChainInfo
function getDrawChain(uint256 fromId, uint256 count) public view returns␣
→˓(DrawChainInfo[] memory)

DrawChainInfo:

struct DrawChainInfo {
uint256 id;
uint32 squareKey;
uint8 active;
uint8 pad1;
uint16 pad2;
uint64 pad3;
uint128 pad4;

}

Returning the Number of Draws (History Count) for Each DrawChain (Drawchain.sol):

@param drawChainId DrawChain ID
@return Number of draws (history count)
function drawHistoryCountByDrawChain(uint256 drawChainId) public view returns (uint256)

Returning the Draw History for Each DrawChain (Batch Version) (Drawchain.sol):

@param drawChainId DrawChain ID
@param fromIdx Starting index (inclusive)
@param count Number of draw histories to retrieve
@return Array of draw histories
function drawHistoryByDrawChain(uint256 drawChainId, uint256 fromIdx, uint256 count)␣
→˓public view returns (History[] memory)

Returning the Number of Draws (History Count) for Each PERSONA (Drawchain.sol):

46.3. Other DrawChain Functions 121

ANICANA Technical Documents

@param personaId PERSONA Id
@return Number of draws (history count)
function drawHistoryCountByPersona(uint256 personaId) public view returns (uint256)

Returning the Draw History for Each PERSONA (Batch Version) (Drawchain.sol):

@param personaId PERSONA Id
@param fromIdx Starting index (inclusive)
@param count Number of draw histories to retrieve
@return Array of draw histories
function drawHistoryByPersona(uint256 personaId, uint256 fromIdx, uint256 count) public␣
→˓view returns (History[] memory)

History:

struct History {
@notice History ID, same as the value returned by draw()
uint256 id;
@notice DrawChain Id
uint256 drawChainId;
@notice PERSONA Id
uint256 personaId;
@notice Owner of the PERSONA at the time of the draw
address personaOwner;
@notice Timestamp when the draw occurred
uint128 drawnOn;
@notice Timestamp when the delivery was made
uint128 deliveredOn;

}

Returning the Number of Draws (History Count) for Each DrawChain and PERSONA (Drawchain.sol):

@param drawChainId DrawChain ID
@param personaId PERSONA Id
@return Number of draws (history count)
function drawHistoryCountByDrawChainAndPersona(uint256 drawChainId, uint256 personaId)␣
→˓public view returns (uint256)

Returning the Draw History for Each DrawChain and PERSONA (Batch Version) (Drawchain.sol):

@param drawChainId DrawChain ID
@param personaId PERSONA Id
@param fromIdx Starting index (inclusive)
@param count Number of draw histories to retrieve
@return Array of draw histories
function drawHistoryByDrawChainAndPersona(uint256 drawChainId, uint256 personaId,␣
→˓uint256 fromIdx, uint256 count) public view returns (History[] memory)

Returning the Number of Draws (History Count) for Each PERSONA Owner (Drawchain.sol):

@param personaOwner Persona owner address
@return Number of draws (history count)
function drawHistoryCountByPersonaOwner(address personaOwner) public view returns␣
→˓(uint256)

122 Chapter 46. Implementation of DrawChain

ANICANA Technical Documents

Returning the Draw History for Each PERSONA Owner (Batch Version) (Drawchain.sol):

@param personaOwner Persona owner address
@param fromIdx Starting index (inclusive)
@param count Number of draw histories to retrieve
@return Array of draw histories
function drawHistoryByPersonaOwner(address personaOwner, uint256 fromIdx, uint256 count)␣
→˓public view returns (History[] memory)

46.4 Executing DrawChain

1. Drawing a DrawChain Contract: Drawchain

Function Executed by Users When Performing Operations

Function to draw a DrawChain (Drawchain.sol):

@param drawChainId DrawChain ID @param personaId PERSONA ID @return 0: Draw failed.
Non-zero: Index of the history function draw(uint256 drawChainId, uint256 personaId) public returns
(uint256)

2. Calling the DrawChain creator (Publisher) when distributing prizes and register the timestamp when delivery of
prizes is made.

Function for Publishers

Function to register a timestamp (Drawchain.sol):

@param historyId History ID returned when draw is successful function delivered(uint256 historyId)

About Timestamps

The delivered() function is optional.
When called upon delivering prizes, a timestamp is registered in the deliveredOn field of the History structure.
If it is not executed, the only consequence is that the delivery history will not be stored at the blockchain level.
The advantages of performing this include:
- Timestamps are set at the blockchain level and cannot be tampered with
- It can be used for future integration with other programs on the smart contract

46.4. Executing DrawChain 123

ANICANA Technical Documents

46.5 Implemented IDrawChainAuthorizers

The following contracts currently implement the IDrawChainAuthorizer interface and are available for use.
To enable them, you need to set the contract in the AuthorizerInfo during DrawChain registration.

46.6 Contract to Limit the Ability Values of PERSONAs that Can Draw
(DrawAbilityLimitter.sol)

(DrawAbilityLimitter.sol)
The ability values need to be set by the square key owner in advance.
After setting the values, set the contract in AuthorizerInfo during DrawChain registration.
If the ability values of the PERSONA to be drawn are within the set range, drawing becomes possible.

Functions for Registration:

@param limit Set the ability value limits. Limit[6] corresponds to FOR, ABS, DFT, MND,␣
→˓INT, EXP, in that order.
@return numPresets Registration number
function newPreset(Limit[6] calldata limit) public returns (uint256)

Functions for Modification:

@notice Specify the registration number for presetId. Only the sender at the time of␣
→˓newPreset can update.
@param presetId Registration number
@param limit Set the ability value limits. Limit[6] corresponds to FOR, ABS, DFT, MND,␣
→˓INT, EXP, in that order.
function alterPreset(uint256 presetId, Limit[6] calldata limit)

Values:

uint256 public numPresets; // Registration number, incremented and␣
→˓assigned automatically by newPreset.
mapping(uint256 => Limit[6]) public preset; // Mapping of registration numbers to␣
→˓ability value limit contents
mapping(uint256 => address) public presetOwner; // Mapping of registration numbers to␣
→˓the sender at the time of newPreset

Limit Structure:

struct Limit {
uint16 min;
uint16 max;

}

124 Chapter 46. Implementation of DrawChain

ANICANA Technical Documents

46.7 Contract to Limit PERSONA Categories that Can Draw (DrawPer-
sonaCategoryLimitter.sol)

(DrawPersonaCategoryLimitter.sol)
Set the contract in AuthorizerInfo during DrawChain registration and specify the categories you want to assign to
presetId.
If the categories included in the PERSONA Id of the drawing PERSONA match the specified categories in presetId,
drawing becomes possible.

46.8 Contract to Limit the Number of Draws (DrawQuantityLimit-
ter.sol)

(DrawQuantityLimitter.sol)
Set the contract in AuthorizerInfo during DrawChain registration and specify the number of draws for presetId.
Drawing is possible if the number of draws made is less than the specified number of draws.

46.9 Contract to Limit the Caller of draw() to Subscribers of the
Square Key Associated with DrawChain (DrawFollowerLimit-
ter.sol)

(DrawFollowerLimitter.sol)
Set the contract in AuthorizerInfo during DrawChain registration.
Determine whether the user who made the draw is a follower of the square key associated with the DrawChain.
If they are a follower, drawing becomes possible

Subscribers of the square key can be placed on a blacklist.
Once on the blacklist, Subscribers will be unfollowed and cannot follow again.
To re-follow, they need to have their registration removed from the blacklist.
Registration and removal from the blacklist can be done by the owner of the square key.

SquareSupplement.sol

Functions to Register or Remove from the Blacklist:

@param squareKey Target square key
@param _address Follower address
@param isBlack true: Register, false: Remove from the blacklist
function setBlackList(uint256 squareKey, address _address, bool isBlack) public

46.7. Contract to Limit PERSONA Categories that Can Draw (DrawPersonaCategoryLimitter.sol)125

ANICANA Technical Documents

46.10 Contract to Limit the Number of draw() Calls by the Same PER-
SONA (DrawCountLimitter.sol)

(DrawCountLimitter.sol)
Set the contract in AuthorizerInfo during DrawChain registration and specify the number of draws for presetId.
Drawing is possible if the number of draws made by the same persona is less than the specified number of draws.

46.11 Contract to Limit draw() Calls to Specific PERSONAs (DrawPer-
sonaLimitter.sol)

(DrawPersonaLimitter.sol)
Specify the PERSONAs that you want to enable for draw() using newPreset.
Set the contract in AuthorizerInfo during DrawChain registration and assign the return value from the previous setup
to presetId.
Drawing is possible if the specified PERSONA is included in the designated Preset.

newPreset:

@param personas Array of PERSONA IDs to be registered
@return numPresets Registration number
function newPreset(uint256[] calldata personas) public returns (uint256)

126 Chapter 46. Implementation of DrawChain

CHAPTER

FORTYSEVEN

GENERATING AND DISTRIBUTING PERSONA

47.1 Overview Diagram

47.2 Generating PERSONA

Generating PERSONA requires consuming ANIMA. The initial attributes are determined based on the amount of
ANIMA deposited during minting. A higher deposit results in higher attribute values.
The deposit amount can be set within the range specified by the seat number of the Knight to which you belong.
The distribution ratio of attributes other than FORCE can be determined by the publisher, while FORCE has a fixed
ratio.

127

ANICANA Technical Documents

47.3 Absorbing

Refer to here for details.

47.4 PERSONA Contract

Functions for Publishers

47.4.1 Generating PERSONA (Persona.sol)

@param to The address where PERSONA is generated.
@param fromId The starting value of the ID portion of the minted Persona. The generated␣
→˓Persona token ID has the following structure for 256-bit data:
The token ID of the generated persona token has a value from fromId to fromId +␣
→˓numTokens - 1
All IDs must be unused.
255 32 31 16 15 0
+--------------------------+-------------+-------------+
| persona id in contents | square key | contents id |
+--------------------------+-------------+-------------+
@param numTokens The number of Persona tokens to mint.
@param conditions MintCondition
@return An array of generated Persona token IDs.
function mintBatch(address to, uint256 fromId, uint256 numTokens, MintCondition[]␣
→˓calldata conditions) public onlyMinter returns (uint256[] memory tokens)

47.4.2 Generating PERSONA (No Array Version) (Persona.sol)

function mintBatchUnified(address to, uint256 fromId, uint256 numTokens, MintCondition␣
→˓calldata condition) public returns (uint256[] memory tokens)

Determining fromId

The fromId used for minting can be obtained using the findAvailableIds function described below.

128 Chapter 47. Generating and Distributing PERSONA

../game-development/persona-absorb.html

ANICANA Technical Documents

47.4.3 MintCondition

@param animaAmounts The amount of Anima tokens to be deposited for minting each Persona.␣
→˓The array's length must be numTokens.
The total amount of anima in this array must be approved to the Persona contract before␣
→˓calling this function.
The deposit amount must be within the minimum and maximum deposit limits set for the␣
→˓square key's associated Knight's seat.
@param weightsList Weight allocation for the attributes of each generated Persona. The␣
→˓array's length must be numTokens. Each element has the following structure:
weights[n][0] Weight of ABS for the nth generated persona
weights[n][1] Weight of DFT for the nth generated persona
weights[n][2] Weight of MND for the nth generated persona
weights[n][3] Weight of INT for the nth generated persona
weights[n][4] Weight of EXP for the nth generated persona

struct MintCondition {
uint256 animaAmounts; // Amount of anima deposited
uint64 elements; // Specify the element (0~6)
uint8[5] weights; // Weight allocation for the attributes of each generated␣

→˓Persona
string metadata; // Set metadata

}

※ Elements can be specified for PERSONA as described in the lottery probability table of Elements.

About PERSONA’s Attribute Values:

PERSONA has six attribute values as parameters:
Attribute values are subject to increase or decrease through Absorbing.
These attributes are also used as conditions for DrawChain execution.

FOR (Force/Energy)
ABS (Abyss)
DFT (Determination)
MND (Mind)
INT (Intelligence)
EXP (Experience)

Attribute Value Assignment:

The total attribute value is determined by the amount of anima that is put in when␣
→˓minting Persona.
When minting a persona, the amount of anima input determines the total attribute values.
The higher the input amount, the higher the total attribute values of the generated␣
→˓persona.
The amount of anima input can be set within the range set by the Knight's seat number.
Based on the total of these attribute values, each attribute value is determined␣
→˓according to the allocation weight set at the time of minting.
Since FOR is a fixed allocation (1/6 of the total value), an allocation is set for the␣
→˓remaining attribute values.

(continues on next page)

47.4. PERSONA Contract 129

../contract-info/attributes.html

ANICANA Technical Documents

(continued from previous page)

The maximum value for each attribute is 4195.
Example)
Input ANIMA amount: 10
Allocation Weight[ABS,DFT,MND,INT,EXP][2,1,1,1,1,1].
Total value: 549
Attribute value of presona generated [FOR,ABS,DFT,MND,INT,EXP][91,152,76,76,76,76].

See the following figure for the relationship between the amount of ANIMA input and the␣
→˓total attribute values

In-
put
AN-
IMA
amount

8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950525456586062646668707274767880828486889092949698100105110115120125130135140145150155160165170175180185190195200210220230240250260270280290300310320330340350360370380390400420440460480500520540560580600620640660680700720740760780800820840860880900920940960980100001020010400106001080011000112001140011600118001200012200124001260012800130001320013400136001380014000142001440014600148001500015200154001560015800160001640016800172001760018000

To-
tal
value

3554525496457428399351032112912261322141915161612170918061902200020402080212021602200224022802320236024002440248025202560260026402680272027602800284028802920296030003040308031203160320032403280332033603400344034803520356036003640368037203760380038403880392039604000405041004150420042504300435044004450450045504600465047004750480048504900495050005050510051505200525053005350540054505500555056005650570057505800585059005950600060586117617562346292635164096468652665856626666867096751679268346875691769587000703270647096712871617193722572577289732273487374740074277453747975067532755875857607762976517673769677187740776277847807782678457864788479037922794279617980800080008000800080008000

About Metadata:

Set metadata using the following steps:
Upload the desired image to IPFS and obtain the hash.
Upload a JSON file to IPFS and obtain the hash.
Set the obtained hash in the metadata.
The JSON file format should be as follows:

{
"name": "persona", // Persona's name
"creator": "user", // Creator's name
"image": "QmYCQ3oX4M8snuesMah8cCfH5z9wuDWZm9rxLmZT5z1BzH", // Hash of the uploaded␣

→˓image
"description": "" // Description

}

130 Chapter 47. Generating and Distributing PERSONA

ANICANA Technical Documents

47.4.4 Setting Mutable Metadata (Persona.sol)

@param tokenId PersonaTokenID
@param metadata Metadata to set
function setMutableMetadata(uint256 tokenId, string memory metadata)

47.4.5 Getting Metadata (Persona.sol)

@param tokenId PersonaTokenID
@return immutableMetadata, mutableMetadata
function getMetadata(uint256 tokenId) public view returns (string memory␣
→˓immutableMetadata, string memory mutableMetadata)

47.4.6 Finding Available PERSONA IDs (Persona.sol)

@param _fromId Starting tokenId
@param _untilId Ending tokenId
@param numTokens Number of tokens
@return uint256 0: No IDs within the search range meet the conditions. Otherwise: The␣
→˓first available ID.
function findAvailableIds(uint256 _fromId, uint256 _untilId, uint256 numTokens) external␣
→˓view returns (uint256)

Sample Usage:

// Starting search value
const fromId = squareKey.shln(16);
// Ending search value
const untilId = fromId.or(new BN(
→˓'ff00000000', 16));
// Find available PERSONA IDs
const targetId = await persona.findAvailableIds(fromId, untilId, number of tokens to␣
→˓search for);
// Use the searched ID for mintBatch
await persona.mintBatch(recipient's address, targetId, number of Persona tokens to mint,␣
→˓[conditions]);

47.4.7 Approving the Transfer of a Specific NFT to Addresses Other Than the Owner
(With Signature) (Persona.sol)

@param to The address to which the transfer is allowed.
@param tokenId PERSONA ID
@param nonce Refer to the signature generation procedure.
@param sig Refer to the signature generation procedure.
function approve(address to, uint256 tokenId, uint256 nonce, bytes memory sig) public␣
→˓validToken(tokenId)

47.4. PERSONA Contract 131

ANICANA Technical Documents

47.4.8 Transferring NFTs (With Signature) (Persona.sol)

@param from The address from which the transfer originates.
@param to The address to which the transfer is made.
@param tokenId PERSONA ID
@param nonce Refer to the signature generation procedure.
@param sig Refer to the signature generation procedure.
function transferFrom(address from, address to, uint256 tokenId, uint256 nonce, bytes␣
→˓memory sig) public validToken(tokenId)

47.4.9 Approving the Transfer of a Specific NFT to Addresses Other Than the Owner
(Persona.sol)

@param to The address to which the transfer is allowed.
@param tokenId PERSONA ID
function approve(address to, uint256 tokenId) public validToken(tokenId)

47.4.10 Transferring NFTs (Persona.sol)

@param from The address from which the transfer originates.
@param to The address to which the transfer is made.
@param tokenId PERSONA ID
function transferFrom(address from, address to, uint256 tokenId) public␣
→˓validToken(tokenId)

132 Chapter 47. Generating and Distributing PERSONA

CHAPTER

FORTYEIGHT

USING PERSONA AS A USER

48.1 Absorbing

PERSONA can absorb ARCANA up to 5 times.
The internal values of the target determine how the internal values of the absorbed PERSONA change, and the
absorbed ARCANA disappears.

PERSONA primarily targets ARCANA with FORCE values lower than its own.
If PERSONA absorbs ARCANA with higher FORCE values, there is a higher chance of the absorbing PERSONA’s
internal values deteriorating.

48.1.1 • Absorbing Success Rate

The success rate of absorption is determined by comparing the total attribute values of the absorbing and absorbed
parties.
Total attribute values are calculated based on weighted internal values.

133

ANICANA Technical Documents

48.1.2 • Attribute Value Increase on Absorb Success

Based on the specified probabilities, a lottery is conducted for each attribute value to determine the increase.
Example: There is a 35% chance of increasing the value of an absorbed opponent’s attribute by 25% of its value.

48.1.3 • Attribute Value Decrease on Absorb Failure

Based on the specified probabilities, a lottery is conducted for each attribute value to determine the decrease.
Example: There is an 80% chance of decreasing the value of an absorbed opponent’s attribute by 65% of its value.

About PERSONA’s Attribute Values:

PERSONA has six attribute values as parameters:
Attribute values can increase or decrease through Absorb.
They are also used as conditions for executing DrawChain.

(continues on next page)

134 Chapter 48. Using PERSONA as a User

ANICANA Technical Documents

(continued from previous page)

FOR (Force/Energy)
ABS (Abyss)
DFT (Determination)
MND (Mind)
INT (Intelligence)
EXP (Experience)

48.1.4 Performing Absorbing

Absorbing can be performed from the “Absorb” page of My Wallet.
Select the target PERSONA and ARCANA, then press “Absorb” to execute the process.

Functions Executed by Users During Operation

Execution of Absorb Function (Persona.sol):

@param predetor Predator (persona) token ID
@param prey Prey (arcana) token ID
@return true: Successful absorption. false: Failed absorption.
function absorb(uint256 predetor, uint256 prey) public returns (bool)

48.1. Absorbing 135

ANICANA Technical Documents

48.2 Executing DrawChain

UI

Registering (subscribing) a Square is a prerequisite for using Drawchain.
Afterward, you can execute a Draw by selecting the target Drawchain and your own PERSONA.

Draw the DrawChain
Contract: Drawchain

136 Chapter 48. Using PERSONA as a User

ANICANA Technical Documents

Function Executed by Users During Operation

Execute DrawChain Function (Drawchain.sol):

@param drawChainId DrawChain ID
@param personaId Persona ID
@return 0: Draw failed. Non-zero: Index of history
function draw(uint256 drawChainId, uint256 personaId) public returns (uint256)

Have the DrawChain creator call it when distributing prizes.
Register the timestamp of the distribution (delivered).

Function for Publishers

Register Timestamp Function (Drawchain.sol):

@param historyId History Id returned when draw is successful
function delivered(uint256 historyId)

48.2.1 DrawChain Execution History

UI

Users can check their own Draw history from the “Draw History” page of the wallet.

48.2. Executing DrawChain 137

ANICANA Technical Documents

138 Chapter 48. Using PERSONA as a User

CHAPTER

FORTYNINE

ARCANA GENERATION INFORMATION

For details on the mechanism of ARCANA generation, please refer to this page.
For environmental information, please refer to the respective environmental information pages.

49.1 ARCANA Generation Information

ARCANA generation information is managed by ArcanaGeneratorInfo and holds the following data:

InfoStatus:

struct InfoStatus {
Info info; // Information as described below
bool isDone; // true: generated, false: not generated

}

Info:

struct Info {
string manaAddress; // Mana address
uint256 eggId; // Egg ID used for generation
address beneficiary; // Wallet address of the recipient (user)
uint256 seed; // Seed used for generation
bytes signature; // Signature used for generation
uint256 timestamp; // Timestamp

}

Functions for Publishers

Get the length of the InfoStatus array:

@param beneficiary wallet address
@returns uint256 Length of the associated InfoStatus array
function getInfoCountByBeneficiary(address beneficiary) public view returns (uint256)

Get InfoStatus:

@param beneficiary wallet address
@param startIndex
@param limit Number of items to retrieve
@returns result InfoStatus[]

(continues on next page)

139

../mechanism/arcana-generate.html

ANICANA Technical Documents

(continued from previous page)

function getInfoByBeneficiary(address beneficiary, uint256 startIndex, uint256 limit)␣
→˓public view returns (InfoStatus[] memory result)

140 Chapter 49. ARCANA Generation Information

CHAPTER

FIFTY

ANICANA API

Information about the APIs used within the Anicana service.

This page provides reference information, for the latest details, please refer to the Swagger UI in each environment.

50.1 Detail API

/detail
By specifying the token contract address in the ‘category’ and the token ID in ‘tokenId’, you can retrieve detailed data
for a token.

50.2 Ipfs Upload API

/up_ipfs
This API allows you to upload files to IPFS and retrieve the uploaded hash.

141

ANICANA Technical Documents

142 Chapter 50. ANICANA API

CHAPTER

FIFTYONE

AFFILIATE FUNCTIONALITY

By using the affiliate functionality, it becomes possible to track the registration and settlements of Levias IDs from the
target service through referral codes.

The issuer can perform service registration on the affiliate screen and invite affiliates. Affiliates can then disseminate
URLs with referral codes attached, such as through social media, and monitor the registrations and settlements made
through the issued URLs on the affiliate screen.

51.1 Implementation Flow - Issuance of Referral Code

1. Issuance of Levias ID Account

* Registration is required for Levias ID accounts for invitations, proceed to register via the following link:
* stagingURL: “https://staging.anicana.org/login/idms?f=true”

2. Registration of Issuer Account

* Using the account registered in 1. (hereinafter referred to as the issuer account), log in and register via the issuer
registration screen.
* ※ Please contact the ANICANA technical support team for the registration URL for the issuer account, as it changes
each time.

3. Approval of Issuer Account Registration

* The ANICANA technical support team approves the registration details.
* Upon approval, a confirmation email will be sent to the registered email address. Log in via the URL provided in
the email.

4. Product Registration

* After approval, log in with the issuer account and proceed with product registration.
* ※ In the case of staging, images, URLs, etc., can be arbitrary if unavailable.

143

https://staging.anicana.org/login/idms?f=true

ANICANA Technical Documents

5. Affiliate Request

* Create an affiliate after product registration.
* Create a separate Levias ID account for the affiliate (refer to 1.).
* Log in with the issuer account, send an invitation to the affiliate account via the affiliate addition screen.
* Upon receiving the invitation email, log in and register with the affiliate account.

144 Chapter 51. Affiliate Functionality

ANICANA Technical Documents

6. Approval of Request

* After completing the affiliate registration, log in with the issuer account. Press the request menu and approve the
affiliate.

7. Issuance of Referral Code

* Log in with the affiliate account, select the registered product, and copy the link.
* The hash at the end of the URL becomes the referral code.

51.1. Implementation Flow - Issuance of Referral Code 145

ANICANA Technical Documents

51.2 Implementation Flow - Use of Referral Code

To associate registration and settlement with Levias ID, it’s necessary to include the issued referral code in the regis-
tration URL and payment request.

To count Levias ID registrations, include the referral code in the generated login URL. (Counts are based on
registrations, not logins)
Refer to Wallet Connection.

To associate payment information, attach the referral code to Levica’s Transaction Request API.
Refer to LEVICA Payments.

About Aggregation

Batch aggregation occurs once daily, so numerical data for settlements, registrations, etc., will be reflected from the
next day.

146 Chapter 51. Affiliate Functionality

/game-development/wallet-connection.html
/game-development/levica.html

CHAPTER

FIFTYTWO

REQUESTING MATRIX DEVELOPMENT

52.1 Matrix Development

The EGG tokens that serve as the source for generating ARCANA tokens are created by the Matrix.
Engineers can deploy their own Matrix to the network by following specific standards.
※ Development engineers who have received the request will build the Matrix using the following steps.

52.2 Matrix Construction Steps

The construction involves the following steps:

• Code the Matrix according to the standards (Solidity smart contract).

• Acquire ARCANA SHARD.

• Deploy the Matrix contract.

• Transfer ARCANA SHARD to the Matrix contract.

• Set the price per EGG generation in the Matrix contract.

• Set the content hash of metadata in the Matrix contract (refer to Uploading to IPFS).

• Set the SquareKey ID in the Matrix contract.

• Register the Matrix contract with the MatrixMaster contract (broadcast).

• Inform the Validator administrator of the MatrixId assigned by MatrixMaster.

147

../egg-management/IPFS-upload.html

ANICANA Technical Documents

52.3 Matrix Standards

Refer to the standards here.

52.4 Matrix Templates

Coming soon on GitHub.

148 Chapter 52. Requesting Matrix Development

../contract-info/interfaces.html

CHAPTER

FIFTYTHREE

GENERATING EGGS

You can generate EGGs on the EGG page within the Validator management interface. (Validator management interfaces
are deployed separately for each validator, so the URL will be different for each administrator).

53.1 Generation Process

1. Enter the MatrixId (ID obtained from development engineers).

2. Get the EGG generation cost with “Get Price”.

3. Input the number of EGGs to generate in “Number of eggs”.

4. Issue the EGG generation transaction with “Generate Eggs” (consumes ANIMA).

149

ANICANA Technical Documents

Regarding the Number of EGGs to Generate

Please input a value up to a maximum of 1000 in “Number of eggs”. Values exceeding this limit may result in an error.

Checkpoints for Failed EGG Generation

• Ensure you have enough ANM for EGG generation.

• Ensure you have enough SHARD within the Matrix.

• Confirm that you possess the Square Key corresponding to the Matrix.

150 Chapter 53. Generating EGGs

CHAPTER

FIFTYFOUR

CHECKING EGG INVENTORY

At the bottom of the EGG screen, a list of EGG tokens owned by the user and the total number owned is displayed on
the right side of the screen. Since EGGs are consumed every time a user generates an ARCANA, regular replenishment
is necessary.

151

ANICANA Technical Documents

152 Chapter 54. Checking EGG Inventory

CHAPTER

FIFTYFIVE

UPLOADING TO IPFS

* Upload the entire set of image data to IPFS for EGG conversion.
A content hash will be returned.

* Upload the metadata JSON containing the content hash of the image data to IPFS.
A content hash will be returned.

The content hash of the metadata JSON is used for Matrix construction and Generating and Distributing PERSONA .

Restrictions on images that can be uploaded

• The API to retrieve images from the PFS has the following restrictions. If the following restrictions are not met,
images cannot be retrieved and therefore cannot be displayed on the portal site.

• The file format is bmp, jpeg, png, or gif.

• 20 MiB or less

55.1 Environment Information

Refer to each environment information page.

153

../egg-management/matrix-development.html
../game-development/persona-introduction.html

ANICANA Technical Documents

154 Chapter 55. Uploading to IPFS

CHAPTER

FIFTYSIX

OBTAINING ANM (ANIMA)

Attention: ANM (ANIMA) is currently not listed, so there is no common method to obtain it.

56.1 What is ANIMA (ANM)?

ANIMA is the Gas token required for using ANICANA.

56.2 Instances Where ANIMA is Required as Gas

• When broadcasting MATRIX on the network.

• When generating EGGs on the ANICANA network.

• When generating PERSONAs on the ANICANA network.

Note

• Gas fees are not incurred for regular transactions.

• Transaction gas limit is 700,000,000/tx.

• Block gas limit is 700,000,000/block.

56.3 ANIMA Generation Logic

• When ARCANA is generated from EGGs, development engineers acquire 1 share.

• When ARCANA is dissolved, dissolution engineers acquire 1 share.

• The total amount of ANM generated is determined daily.

• The amount of minted ANM is determined by the shares acquired by each individual during a day.

155

ANICANA Technical Documents

156 Chapter 56. Obtaining ANM (ANIMA)

CHAPTER

FIFTYSEVEN

VALIDATOR MANAGEMENT INTERFACE

Participants who are Validators or have been issued a Square Key by a Validator have access to the Validator Manage-
ment Interface. It is deployed individually for each Validator, so the URL varies for each administrator. This interface
allows users to apply for node participation, generate EGGs, and perform various operations related to Queens and
Knights.

Preparation steps required for content development are as follows:

The Validator Management Interface is mainly used for EGG generation.

Step Details
Validator Setup Refer to Validator Setup.
Generating Square Key Refer to Generating Square Key.
Requesting Matrix Development Refer to Requesting Matrix Development.
Acquiring ANIMA Refer to Acquiring ANM(ANIMA).
Generating EGGs Refer to Generating EGGs.

57.1 Obtaining a Private Key

You can check the Private Key of the logged-in user.
Press F12 to display the browser’s development tools. Confirm the private key displayed in the console.

. . . figure:: . . . /img/ValidatorUI/ValidatorUI-10.png

Additional details for each screen are provided below.

57.2 DASHBOARD

• Queen Tab

You can check the address of the Queen and her term.

1. Queen’s Address

2. Queen’s Term

• Knights Tab

You can check the address and number of Knights. Validators need to obtain network participation approval from one
of the Knights listed here. Approved Validators are linked to the No. of the approving Knight.

157

ANICANA Technical Documents

1. Knight’s Address

2. Knight’s Number

• Pawns

Check the participation status of other Validators. You can see the address, the No. of the approving Knight, and the
joining date of the Pawn.

1. Pawn’s Address

2. No. of the Knight who approved the Pawn

3. Date of joining the Pawn’s node

57.3 PROFILE

Click on the icon of the user on the upper right to access the PROFILE page. Here, you can apply to be a Validator,
check the status of your application, and confirm your wallet address.

1. Transition icon to PROFILE

2. Check the status of your own application

3. Apply button to Knight. Select the number of the Knight you want to apply to.

4. Your own wallet address

158 Chapter 57. Validator Management Interface

ANICANA Technical Documents

57.3. PROFILE 159

ANICANA Technical Documents

57.4 EGG

For information about EGG generation, refer to here .

57.5 KNIGHT

You can approve new Validators, hold Queen elections, and vote for Queen removal.

1. Approve a new Validator

2. Queen election

3. Vote for Queen removal

- Pawn Requests
A list of pending approvals is displayed. You can perform approvals or denials from the list. Also, display a list of
Validators approved by your Knight number.
※The list will be empty if you are not a Knight.

1. Address of the Validator who applied

2. Application date

160 Chapter 57. Validator Management Interface

../egg-management/generate-eggs.html

ANICANA Technical Documents

57.5. KNIGHT 161

ANICANA Technical Documents

3. Approve or Deny button

- Elect Queen
This page is used during Queen elections. If elections are in progress, you can select the voting address and cast your
vote.
Also, display a list of addresses that have voted or been trusted.

※You can only view this page if you are a Knight.

1. Select a voting address and cast your vote

- Remove Queen
This page is used to vote for the removal of the Queen. Also, display the current number of votes.
※You can only view this page if you are a Knight.

1. Vote for Queen removal

162 Chapter 57. Validator Management Interface

ANICANA Technical Documents

57.6 QUEEN

This page allows operations for Queens. You can approve and remove Knights, and set the deposit amount. It also
displays the current list of Knights.
※You can only view this page if you are a Queen.

1. Enter and set the ANIMA quantity

2. Remove a specific Knight. Also, specify the address and Knight number of the new Knight to appoint.

57.6. QUEEN 163

ANICANA Technical Documents

164 Chapter 57. Validator Management Interface

CHAPTER

FIFTYEIGHT

LEVICA MERCHANT MANAGEMENT SCREEN

A screen where users can view payment histories for affiliate stores and payment information from LEVICA to affiliate
stores.

58.1 Payment History Screen

User refund amounts and reuse amounts are displayed.

165

ANICANA Technical Documents

58.2 All Billing History Screen

Total monthly sales, the refund setting upper limit amount for the following month, and the actual deposit amount are
displayed. Deposit processing is done from the admin screen.

58.3 Reuse Settings Screen

ON/OFF for reuse, setting the refund upper limit amount for the next period, and setting the reuse destination wallet
address.

58.4 About Reuse Functionality

A feature that automatically reallocates part of the settlement to the designated levias chain address for reuse instead
of refunding it via bank transfer to affiliate stores when settlements are made.
Reuse can be set by specifying the reuse amount on the management screen (Reuse Settings Screen: Figure 2) and
pressing confirm after setting the destination levias chain address (Reuse Settings Screen: Figure 3).

Reuse Flow:

Reuse Settings Screen:

166 Chapter 58. LEVICA Merchant Management Screen

ANICANA Technical Documents

However, the setting timing will be for the refund upper limit amount within the range from the 11th to the next
month’s 10th.
Once it reaches the 11th, the setting is confirmed and cannot be changed.

Example:

If reuse is ON, the above action will be taken. If it is OFF, everything will continue to be refunded as usual. (Reuse
Settings Screen: Figure 1)

The transfer date is the end of the month. (Example: The transfer date for the refund claim period from 2/11 to 3/10 is
3/31)
If reuse is ON, it will be sent immediately to the designated levias chain address.
The app will display “Reuse” in the status.

58.4. About Reuse Functionality 167

ANICANA Technical Documents

168 Chapter 58. LEVICA Merchant Management Screen

CHAPTER

FIFTYNINE

INTERFACE SPECIFICATIONS

59.1 MATRIX Standard

Contracts that have the following interfaces can be registered as a Matrix in MatrixMaster.:

// Provide materials of EGG to MatrixMaster.
function spawnCondition() external returns(IEggBuilder.ComposeCondition memory);

// Return the amount of ANIMA required for EGG generation. The paid ANIMA will be␣
→˓rewarded to the developer upon generation.
function getPrice() external view returns (uint256);

// Matrix users are limited to users with the Square Key of the returned ID here.
function correspondingSquareKey() external view returns (uint256);

// Check the owner.
function getOwner() external view returns (address);

59.2 Other Smart Contract Interfaces

To be published on GitHub soon.

169

ANICANA Technical Documents

170 Chapter 59. Interface Specifications

CHAPTER

SIXTY

GENE CALCULATION

60.1 Gene Overview

ARCANA, EGG, and SHARD each have unique “gene information” for every token. Gene information changes and is
inherited as tokens transform from SHARD to EGG to ARCANA and back to SHARD.

Process Gene Changes
SHARD → EGG The gene information synthesized from two different SHARDs becomes the gene of the

EGG
EGG → ARCANA The gene information possessed by the EGG is directly inherited as the gene of the AR-

CANA
ARCANA →
SHARD

The gene information carried by the ARCANA is directly inherited as the gene of the
SHARD

60.2 Data Structure of Gene Information

Gene information is represented as a 32-dimensional vector, with each vector having a value range of 8 bits (-128 to
+127). In the contract, it is stored in a single 256-bit field:

|-------------------------256bit[hex]--------------------------|
0xffeeddccbbaa99887766554433221100ffeeddccbbaa99887766554433221100
^^ ^^
Dimension 1 Dimension 32

60.3 Gene Calculation for EGG Generation from SHARD

Let the gene vectors for two SHARDs X and Y, which are the basis for synthesis, be GX and GY. Let the number of X
be a and the number of Y be b. The gene vector for the newly generated EGG is denoted as GZ.

The gene dimensions for the gene vectors are denoted as GXn, GYn, and GZn (n = 1 to 32).

Genes are calculated using the following formula.:

171

ANICANA Technical Documents

GZi = (aGXi + bGYi) / (a+b)
※ a + b is always 100

60.4 About Mutation

Even for EGG generation between SHARDs of the same type and the same quantity, it is not guaranteed that the EGGs
will have the same genes. There is a certain “mutation” logic in gene calculation.

For each of the 32 dimensions, with a 5% probability for each, the inherited value may be overwritten with a completely
different new value.

172 Chapter 60. Gene Calculation

CHAPTER

SIXTYONE

ARCANA EXTRACTION

During the extraction of an ARCANA,

1. Time until extraction is complete

2. Number of resulting SHARDs

Both of these are randomly determined, and their lottery probabilities are as follows.

61.1 Duration of ARCANA Extraction

The time required for the extraction of an ARCANA token is determined through a hashing process based on the gene
and salt (internal constant). The extraction time ranges from 5 minutes to 48 hours, with 16 possible values, and an
expected value of 8.7 hours. The occurrence probabilities are as follows.

Duration Probability
5.0 min 6.25%
7.6 min 6.25%
11.7 min 6.25%
17.8 min 6.25%
27.2 min 6.25%
41.6 min 6.25%
1.1 hour 6.25%
1.6 hour 6.25%
2.5 hour 6.25%
3.8 hour 6.25%
5.8 hour 6.25%
8.8 hour 6.25%
13.5 hour 6.25%
20.6 hour 6.25%
31.4 hour 6.25%
48.0 hour 6.25%

173

ANICANA Technical Documents

61.2 Number of ARCANA SHARDs Obtained in ARCANA Extraction

The number of SHARDs obtained when extraction an ARCANA token is determined through a hashing process based
on the gene and salt (internal constant). The number of SHARDs ranges from 50 to 2500, with 16 possible values, and
an expected value of 300. The occurrence probabilities are as follows.

Number Generated Probability
50 13.91%
100 13.67%
150 12.97%
200 11.89%
250 10.53%
300 9.00%
350 7.43%
450 5.92%
550 4.56%
700 3.39%
850 2.44%
1050 1.69%
1300 1.13%
1600 0.73%
2000 0.46%
2500 0.28%

61.3 Steps for ARCANA Extraction

The extraction of ARCANA is performed following these steps.

#. Approve the ARCANA Token for the Decomposer.
Use function: Arcana.approve(to, tokenId)
#. Initiate the extraction.
Use function: Decomposer.beginDecompose(tokenId)
#. Obtain detailed information about the extraction job and confirm the completion time.
Use function: Decomposer.getState(jobId)
#. Wait for the extraction to be completed.

#. End the extraction and receive the SHARDs.
Use function: Decomposer.endDecompose(jobId)

• Reference Video

174 Chapter 61. ARCANA Extraction

CHAPTER

SIXTYTWO

ARCANA ATTRIBUTE VALUE CALCULATION

62.1 Lottery Probability of Green Stars

The lottery for Green Star is conducted at the following probabilities when generating ARCANA.

Green Star Probability
1 22.0%
2 19.2%
3 16.5%
4 13.7%
5 11.0%
6 8.2%
7 5.5%
8 2.7%
9 0.9%
10 0.01%

62.2 Lottery Probability of Elements

Elements are drawn with the following probabilities from the listed types.

Internal Representation Element Name
0 Wood - Eternal Tree
1 Fire - Crimson Flame
2 Earth - Adamantine Rock
3 Metal - Peerless Steel
4 Water - Heavenly Dew
5 Light - Golden Light
6 Darkness - Unfathomable Abyss

175

ANICANA Technical Documents

176 Chapter 62. ARCANA Attribute Value Calculation

CHAPTER

SIXTYTHREE

BLOODLINE

63.1 Overview

Bloodline is the lineage to which ARCANA belongs, and every ARCANA belongs to one of the 100 Bloodlines. Each
Bloodline has an ancestor, and it is inherited as shown in the diagram below, through the cycle of Egg -> ARCANA ->
Shard, originating from the ancestor’s Shard. Newly generated ARCANA randomly inherit one of the two Bloodlines
of the Shards used in the birth Egg.

63.2 Information Retrieval

Bloodline information can be obtained by referencing the Bloodline contract. The Bloodline contract has the following
interfaces.

Retrieving information about a Bloodline (Bloodline.sol):

// Returns the ID, name, and number of ARCANA belonging to the specified bloodline
// @param bloodlineID
// @return origin ID of the bloodline
// nArcanas number of ARCANA belonging to it
// name name of the bloodline
function bloodlineInfo(uint256 bloodlineID) public view returns(

uint256 origin,
uint256 nArcanas,
string memory name

)

Retrieving the Bloodline to which an ARCANA belongs(Bloodline.sol):

// Returns the bloodlineID to which the ARCANA belongs using getBloodline[arcanaID]
// @param arcanaID
// @return bloodlineID
function getBloodline (uint256 arcanaID) public view returns(uint256 bloodlineID)

177

ANICANA Technical Documents

Retrieving a list of ARCANA belonging to a specific Bloodline (including already burned ARCANA)(Bloodline.sol):

// Returns an array of arcanaID belonging to the specified bloodlineID
// @param bloodlineID
// @param idx start index
// @param limit number of items to retrieve
// @return uint256[] memory array of arcanaID
function getBelongings(uint256 bloodlineID,uint256 idx, uint256 limit) public view␣
→˓returns(uint256[] memory)

63.3 List of Bloodlines

id name origin
1 Zeus Greek Mythology
2 Indra Hinduism
3 Allah Islam
4 Odin Norse Mythology
5 Heracles Greek Mythology
6 Vishnu Hinduism
7 Hera Greek Mythology
8 Ganesha Hinduism
9 Osiris Ancient Egyptian Mythology
10 Apollo Greek Mythology
11 Persephone Greek Mythology
12 Anubis Ancient Egyptian Mythology
13 Loki Norse Mythology
14 Medusa Greek Mythology
15 Krishna Hinduism
16 Shiva Hinduism
17 Athena Greek Mythology
18 Dionysus Greek Mythology
19 Varuna Hinduism
20 Isis Ancient Egyptian Mythology
21 Nut Ancient Egyptian Mythology
22 Pele Hawaiian Mythology
23 Freya Norse Mythology
24 Balder Norse Mythology
25 Tezcatlipoca Aztec Mythology
26 Izanami Japanese Mythology
27 Ma’at Ancient Egyptian Mythology
28 Hachiman Shintoism
29 Pan Greek Mythology
30 Manu Hinduism
31 Hephaestus Greek Mythology
32 Inti Incan Mythology
33 Vayu Hinduism
34 Gukumatz Mayan Mythology
35 Frigg Norse Mythology
36 Hestia Greek Mythology
37 Saraswati Hinduism

continues on next page

178 Chapter 63. Bloodline

ANICANA Technical Documents

Table 1 – continued from previous page
id name origin
38 Olokun Yoruba Mythology
39 Agni Hinduism
40 K’an Mayan Mythology
41 Izanagi Japanese Mythology
42 Ta’aroa Polynesian Mythology
43 Anu Sumerian Mythology
44 Tyche Greek Mythology
45 Bellona Roman Mythology
46 Ishtar Babylonian Mythology
47 Utu Sumerian Mythology
48 Hecate Greek Mythology
49 Hades Greek Mythology
50 Set Ancient Egyptian Mythology
51 Mithra Persian Mythology
52 Amaterasu Japanese Mythology
53 Thor Norse Mythology
54 Enki Sumerian Mythology
55 Morrigan Celtic Mythology
56 Pachamama Incan Mythology
57 Baron Samedi Voodoo
58 Artemis Greek Mythology
59 Bennu Ancient Egyptian Mythology
60 Aphrodite Greek Mythology
61 Ra Ancient Egyptian Mythology
62 Brigid Celtic Mythology
63 Tiamat Babylonian Mythology
64 Rama Hinduism
65 Susanoo Japanese Mythology
66 Cronus Greek Mythology
67 Dagda Celtic Mythology
68 Quetzalcoatl Aztec Mythology
69 Parvati Hinduism
70 Bastet Ancient Egyptian Mythology
71 Demeter Greek Mythology
72 Fortuna Roman Mythology
73 Narasimha Hinduism
74 Yama Hinduism
75 Sekhmet Ancient Egyptian Mythology
76 Phobos Greek Mythology
77 Lakshmi Hinduism
78 Silvanus Roman Mythology
79 Brahma Hinduism
80 Nephthys Ancient Egyptian Mythology
81 Tyr Norse Mythology
82 Tsukuyomi Japanese Mythology
83 Poseidon Greek Mythology
84 Durga Hinduism
85 Forseti Norse Mythology
86 Eros Greek Mythology
87 Thoth Ancient Egyptian Mythology

continues on next page

63.3. List of Bloodlines 179

ANICANA Technical Documents

Table 1 – continued from previous page
id name origin
88 Idun Norse Mythology
89 Kali Hinduism
90 Hermes Greek Mythology
91 Viracocha Incan Mythology
92 Inanna Sumerian Mythology
93 Enlil Sumerian Mythology
94 Ahura Mazda Zoroastrianism
95 Janus Roman Mythology
96 Nuada Celtic Mythology
97 Oshun Yoruba Mythology
98 Chaac Mayan Mythology
99 Mictlantecuhtli Aztec Mythology
100 Prometheus Greek Mythology

180 Chapter 63. Bloodline

CHAPTER

SIXTYFOUR

TENEBRAE OVERVIEW

64.1 Overview

Tenebrae is a token that can be equipped on ARCANA/PERSONA and provides various effects by activating SKILL.

64.2 Issuance of Tenebrae

Tenebrae can be issued by consuming RECIPE tokens.
Depending on the type of RECIPE, the SKILL that Tenebrae can activate is determined.

64.3 Equipping Tenebrae

Up to 6 Tenebrae can be equipped on a single ARCANA/PERSONA.
Once Tenebrae is equipped, it cannot be removed.
Additionally, once Tenebrae is equipped, it cannot be transferred individually. If ARCANA/PERSONA is transferred,
the equipped Tenebrae will also be transferred along with it.

64.4 Activation of Tenebrae

The effects can be obtained by activating SKILL.
SKILL has activation conditions and costs.

181

ANICANA Technical Documents

182 Chapter 64. Tenebrae Overview

ANICANA Technical Documents

64.4. Activation of Tenebrae 183

ANICANA Technical Documents

184 Chapter 64. Tenebrae Overview

ANICANA Technical Documents

64.5 Tenebrae Flow

64.5. Tenebrae Flow 185

ANICANA Technical Documents

186 Chapter 64. Tenebrae Overview

CHAPTER

SIXTYFIVE

IMPLEMENTATION OF TENEBRAE

Overview Diagram

187

ANICANA Technical Documents

65.1 Operator (RECIPE Owner)

65.1.1 Skill Contract

Create a contract implementing the ITenebraeSkill interface (ITenebraeSkill.sol):

@notice Activate the skill
@param tenebraeInfo Target tenebrae
@return Activation effect
function activate (TenebraeTokenInfo calldata tenebraeInfo) external returns␣
→˓(ActivationEffect memory);

TenebraeTokenInfo[]:

struct TenebraeTokenInfo {
uint256 id; // Tenebrae ID
uint256 attachedTo; // Attached to ID
uint16 activationCount; // Number of skill activations
uint8 attachedTokenType; // Attached to token type (TenebraeConst.TOKEN_TYPE_

→˓XXXX)
uint8 attachedSlot; // Attached slot number
address skill; // Skill
uint256 skillSet; // Skill set (classification within the skill)

}

ActivationEffect[]:

struct ActivationEffect {
int16[6] abilityValues; // Changes in attached entity's ability values
int16[6] abilityRatios; // Changes in attached entity's ability ratios
bool[6] resetAbility; // true: reset ability changes
bool dismissal; // true: detach Tenebrae after execution. false: don't␣

→˓detach from slot
string skillMetadata; // Metadata to be set as activation result

}

TenebraeConst:

contract TenebraeConst {
uint8 public constant TOKEN_TYPE_NONE = 0;
uint8 public constant TOKEN_TYPE_SHARD = 1;
uint8 public constant TOKEN_TYPE_ARCANA = 2;
uint8 public constant TOKEN_TYPE_PERSONA = 3;
uint8 public constant TOKEN_TYPE_EGG = 4;

uint8 public constant EVENT_MINT = 0;
uint8 public constant EVENT_ATTACH = 1;
uint8 public constant EVENT_ACTIVATE = 2;
uint8 public constant EVENT_VANISH = 3;

}

188 Chapter 65. Implementation of Tenebrae

ANICANA Technical Documents

65.1.2 Registration of Skill Contract

Register a contract implementing the ITenebraeSkill interface (RecipeController.sol):

@notice Register TenebraeSkill
@param assesor // Contract address implemented
@param description // Description
@return skillId
function registerSkill(address skill,string calldata description) public override␣
→˓onlyRegisterer returns (uint256)

65.1.3 Reference of Skill Contract

Reference a contract implementing the ITenebraeSkill interface (RecipeController.sol):

@param skillId
@return RegisteredInfo
function getSkill(uint256 skillId) public override view returns (RegisteredInfo memory)

For multiple:

@param offset @param limit @return RegisteredInfo function getSkills(uint256 offset,uint256 limit) pub-
lic override view returns (RegisteredInfo[] memory)

Get the number of registered skills:

function getLastSkillId() public override view returns (uint256)

65.1.4 Tenebrae Mint Assessor Contract

Create a contract implementing the ITenebraeMintAssesor interface (ITenebraeMintAssesor.sol):

@notice Determine whether the mint conditions of Tenebrae are met.
@param tokenType Type of token TenebraeConst.TOKEN_TYPE_XXXX
@param ids Array of token IDs to consume
@param amounts Quantities of tokens to consume
@return true: mintable under specified conditions, false: not mintable under specified␣
→˓conditions
function asses(uint8 tokenType,uint256[] calldata ids,uint256[] calldata amounts)␣
→˓external view returns (bool);

65.1.5 Registration of Tenebrae Mint Assessor Contract

Register a contract implementing the ITenebraeMintAssesor interface (RecipeController.sol):

@notice Register TenebraeMintAssesor
@param assesor // Contract address implemented
@param description // Description
@return assesorId
function registerAssesor(address assesor,string calldata description) public override␣
→˓onlyRegisterer returns (uint256)

65.1. Operator (RECIPE Owner) 189

ANICANA Technical Documents

65.1.6 Reference of Tenebrae Mint Assessor Contract

Reference a contract implementing the ITenebraeMintAssesor interface (RecipeController.sol):

@param assesorId
@return RegisteredInfo
function getAssesor(uint256 assesorId) public override view returns (RegisteredInfo␣
→˓memory)

For multiple:

@param offset @param limit @return RegisteredInfo function getAssesors(uint256 offset,uint256 limit)
public override view returns (RegisteredInfo[] memory)

Get the number of registered assessors:

function getLastAssesorId() public override view returns (uint256)

65.1.7 Recipe Minting

Mint a Recipe (Recipe.sol):

@notice mint
@param to Address of the recipient
@param skillId Skill ID to grant
@param assesorId Assessor ID of minting conditions
@return ID of the minted Tenebrae token
function mint(address to,uint256 skillId,uint256 skillSet,uint256 assesorId) public␣
→˓onlyMinter returns (uint256)

TokenInfo:

struct TokenInfo {
uint256 id; // RECIPE ID
address assesor; // Assessor contract for Tenebrae MINT conditions
address skill; // Skill
uint256 skillSet; // Classification within the skill

}

65.1.8 Fetching Ability Values of ARCANA Token/PERSONA Token

Get the incremental changes in ability values (TenebraeHost.sol):

@param hostType Type of TenebraeConst.TOKEN_TYPE_XXXX
@param hostId Host ID
@return HostInfo
function hostInformation(uint8 hostType,uint256 hostId) public view returns (HostInfo␣
→˓memory)

HostInfo:

/// @notice Holds the changes in ability values
struct HostInfo {

(continues on next page)

190 Chapter 65. Implementation of Tenebrae

ANICANA Technical Documents

(continued from previous page)

/// @notice ARCANA/PERSONA
uint8 hostType;
/// @notice tokenId of ARCANA/PERSONA
uint256 hostId;
/// @notice slot for attaching TENEBRAE
uint256[] slot;
/// @notice metadata of the result of activation of TENEBRAE
string[] activatedMetadata;
/// @notice increments of attribute values
int32[6] incrementValues;
/// @notice multiplier of attribute values (1/100000)
int32[6] incrementRatios;

}

Get the ability values of Arcana (original + adjusted values) (TenebraeHost.sol):

@notice Get the ability values of Arcana (original + adjusted values).
@param tokenId Token ID of Arcana
@return original Arcana's original ability values
@return currentAbilities Adjusted ability values
function getArcanaParameters(uint256 tokenId) external view returns (IArcana.Parameters␣
→˓memory original,uint16[] memory currentAbilities)

Get the ability values of Persona (original + adjusted values) (TenebraeHost.sol):

@notice Get the ability values of Persona (original + adjusted values).
@param tokenId Token ID of Persona
@return original Persona's original ability values
@return currentAbilities Adjusted ability values
function getPersonaParameters(uint256 tokenId) external view returns (uint16[] memory␣
→˓original,uint16[] memory currentAbilities)

65.1.9 Fetching the List of Equipped TENEBRAE

Get the list of equipped TENEBRAE (TenebraeHost.sol):

@notice Get the list of TENEBRAE attached to ARCANA/PERSONA
@param hostType Type of target ARCANA/PERSONA TenebraeConst.TOKEN_TYPE_XXXX
@param hostId ID of target ARCANA/PERSONA
@return Attachment status of attachment slots (0 indicates not attached)
function getAttached(uint8 hostType,uint256 hostId) public view validType(hostType)␣
→˓returns (uint256[] memory)

65.1. Operator (RECIPE Owner) 191

ANICANA Technical Documents

65.1.10 Fetching History

Get history (TenebraeHost.sol):

@param tenebraeId Tenebrae ID
@return history
@dev Get history
function getHistory(uint256 tenebraeId) public override view returns(History[] memory)

TokenInfo:

struct History {
uint8 eventType; // TenebraeConst.EVENT_XXX
uint64 timestamp;
address triggeredBy; // Executor address msg.sender

}

65.1.11 Granting and Revoking Access to Ability Value Modification Functions

Grant access (TenebraeGameIF .sol):

function grantAccess(address _addr) public onlyAuthority

Revoke access (TenebraeGameIF .sol):

function revokeAccess(address _addr) public onlyAuthority

65.2 Manufacturer

65.2.1 Production of TENEBRAE Tokens

Mint TENEBRAE (Recipe.sol):

@param recipeId
@param mintTo
@param shardIds // IDs of consumed shards
@param amounts // Quantities of consumed shards
function produceByShard(uint256 recipeId,address mintTo,uint256[] calldata shardIds,
→˓uint256[] calldata amounts) public onlyOwner validToken(recipeId) returns (uint256)

65.3 Consumer (TENEBRAE Token Owner)

65.3.1 Equipping TENEBRAE Tokens

Attach TENEBRAE to ARCANA/PERSONA (TenebraeHost.sol):

192 Chapter 65. Implementation of Tenebrae

ANICANA Technical Documents

@notice Attach TENEBRAE to ARCANA/PERSONA
@param hostType Type of target ARCANA/PERSONA TenebraeConst.TOKEN_TYPE_XXXX
@param hostId ID of target ARCANA/PERSONA
@param tenebraeId Target attachment
@return Index of the attached slot (0-based)
@dev Revert with revert message E10 if there are no available slots
function attach(uint8 hostType,uint256 hostId,uint256 tenebraeId) public override␣
→˓returns (uint256)

65.3.2 Activation of Skill

Activate Skill (TenebraeToken.sol):

@notice active
@param tenebraeId Target TENEBRAE
function activate(uint256 tenebraeId)

65.4 Publisher

65.4.1 Fetching Metadata Set by Activating TENEBRAE

Get the list of activation data of SKILL (TenebraeHost.sol):

@notice Get the list of activation data of SKILL.
@param hostType Type of target ARCANA/PERSONA TenebraeConst.TOKEN_TYPE_XXXX
@param hostId ID of target ARCANA/PERSONA
@return List of skill activation data
function getActivatedSkills(uint8 hostType,uint256 hostId) external view␣
→˓validType(hostType) returns (ActivatedSkillInfo[] memory)

Specify slot (TenebraeHost.sol):

@notice Get the activation data of SKILL
@param hostType Type of target ARCANA/PERSONA TenebraeConst.TOKEN_TYPE_XXXX
@param hostId ID of target ARCANA/PERSONA
@param slotIdx Index of target attached slot
@return Skill activation data
function getActivatedSkill(uint8 hostType,uint256 hostId,uint8 slotIdx) external view␣
→˓validType(hostType) returns (ActivatedSkillInfo memory)

ActivatedSkillInfo:

/// @notice Metadata information of the activated skill
struct ActivatedSkillInfo {

/// @notice Slot index of attachment
uint8 slotIdx;
/// @notice Metadata of the activated SKILL
string metadata;

}

65.4. Publisher 193

ANICANA Technical Documents

65.4.2 Consuming Metadata Set by Activating TENEBRAE

Consume activation data of SKILL (TenebraeHost.sol):

@notice Consume activation data of SKILL (delete - clear).
@param hostType Type of target ARCANA/PERSONA
@param hostId ID of target ARCANA/PERSONA
@param slotIdx Index of target attached slot
function consumeActivatedData(uint8 hostType,uint256 hostId,uint8 slotIdx) public␣
→˓validType(hostType)

65.4.3 Fetching Ability Value Changes as Game Results

Reference Operator (RECIPE Owner)

65.4.4 Updating Incremental Values and Ratios of ARCANA/PERSONA Ability Val-
ues (Authorization Required)

Consume activation data of SKILL (TenebraeHost.sol):

@param hostType Type of target ARCANA/PERSONA
@param hostId ID of target ARCANA/PERSONA
@param values Values to set in HostInfo's incrementValues
@param ratios Values to set in HostInfo's incrementRatios
function updateAbilities(uint8 hostType,uint256 hostId,int16[6] calldata values,int16[6]␣
→˓calldata ratios) public onlyGranted

194 Chapter 65. Implementation of Tenebrae

CHAPTER

SIXTYSIX

ADVANCED SECURITY SETTINGS FOR WALLET CONNECTION

Through the ANICANA Wallet Server, it is possible to obtain a user’s address from their content and verify that they
are the owner of that address. Below is an example procedure.

Consumer: User of the content
Frontend: Content’s frontend
Backend: Content’s backend
Wallet: ANICANA Wallet Server

195

ANICANA Technical Documents

66.1 One-Time Token

On the wallet side, simply sign the given text with the user’s private key and return it. The signing method used here
is the Elliptic Curve Digital Signature Algorithm (ECDSA). Handling this signed data is delegated to the consumer
(content) system. To verify if the owner of the address sent in the callback after login is indeed the user in question,
you need to verify this signed data. Since the signer’s address can be obtained from the signed data and the message
before signing, this can be used as a means of confirming the identity of the declared address. To prevent the reuse of
signed data, it is advisable to use disposable target text.

Caution: Please use web3 version 1.9.8.

Example of signature creation:

var Web3 = require('web3');
var web3 = new Web3("https://RPC_ENDPOINT");

var original_message = "Hello world";
var privateKey = "0xYOURPRIVATEKEYXX"
var signedData = web3.eth.accounts.sign(original_message, privateKey);

Example of signedData:

{
message: 'Hello world',
messageHash: '0x8144a6fa26be252b86456491fbcd43c1de7e022241845ffea1c3df066f7cfede',
v: '0x1b',
r: '0x399ab420d35d6d40e55580317b5fbb907942b6e35f56c22ddd306bd7b13aef8d',
s: '0x4cedaa39073a5e626043228a20d2a386d9e0a80f5cafb90ac0798559b7b82d1d',
signature:

→˓'0x399ab420d35d6d40e55580317b5fbb907942b6e35f56c22ddd306bd7b13aef8d4cedaa39073a5e626043228a20d2a386d9e0a80f5cafb90ac0798559b7b82d1d1b
→˓'
}
// signature is the signed data

Verification example:

var Web3 = require('web3');
var web3 = new Web3("https://RPC_ENDPOINT");

var original_message = "Hello world"
var signature = "XXXXXXXXXXXXXXXXXXXX" // Signature data sent in the callback
var signer = web3.eth.accounts.recover(original_message, signature);

Example of signer:

0x7E99a37fFc1D9eCC05C9ac0c65598F8215c01582

196 Chapter 66. Advanced Security Settings for Wallet Connection

197

ANICANA Technical Documents

CHAPTER

SIXTYSEVEN

UPDATE HISTORY

No Date of Update Version Update Details

26.
2024/05/01 1.5.1

LEVICA API
(Production)
LEVICA API (Ark.one)
LEVIAS ID (Production)
LEVIAS ID (Ark.one)
Update of the release
contents

25.
2024/04/26 1.5.0

tenebrae overview
tenebrae Implementation
Create page

24.
2024/04/21 1.4.8

Bloodline
Update the list of
Bloodline

23.
2024/04/10 1.4.7

Production Environment
Information
Added Boloodline
contract addresses and abi
Bloodline
Update the list of
Bloodline

21.
2024/04/03 1.4.6

LEVICA API
(Production)
Update scheduled release
date

21.
2024/03/28 1.4.5

Ark.one environment
information
Delete unnecessary
environment information
LEVICA API
(Production)
Update scheduled release
date

20.
2024/03/24 1.4.4

Ark.one Environment
Information
URL of LEVICA
merchant management
screen

19.
2024/03/16 1.4.3

Uniformity of wording
LEVICA API
(Production)
Updated release schedule

18.
2024/03/13 1.4.2

LEVICA-backendArk.one
Updated release schedule

17.
2024/03/10 1.4.1

Release information for
each platform function
Updated API Server
(production) and API
Server (Ark.one testnet)

16.
2024/03/06 1.4.0

Release information for
each platform feature
Add each page
Change History
Moved to the bottom of
the menu

15.
2024/02/25 1.3.1

Ark.one Testnet
Environment Information
Added Boloodline
contract addresses and abi

14.
2024/02/13 1.3.0

Added the following
pages
Boloodline
Corrected the wording on
the following page (Player
Consumer)
Advanced Security
Settings for Wallet
Connection
PERSONA Overview
ANICANA life cycle
ARCANA Generation
Process
Implementation of
DrawChain
Absorbing

13.
2024/01/05 1.2.0

Added the following
pages
Quick Start for Publishers
Affiliate functionality
Validator Management
Interface
ARCANA Generation
Process
ARCANA Generation
API
Modified/added
explanation of Private
Key acquisition
LEVICA Payment
Wallet Connection
Added setting of
referral-code

12.
2023/12/20 1.1.8

Generating and
Distributing PERSONA
Add attribute value
assignments

11.
2023/12/11 1.1.7

ARCANA Generation
API
Adding supplementary
information for manaInfo
Uploading to IPFS
Added limitation of
images that can be
uploaded

10.
2023/11/20 1.1.6

Production Environment
Information
Ark.one Testnet
Environment Information
Added Square abi

9.
2023/10/25 1.1.5

Wallet Connection
Add supplement

8.
2023/10/10 1.1.4

Wallet Connection
Add parameter

7.
2023/08/21 1.1.3

Production Environment
Information
Ark.one Testnet
Environment Information
Implementation of
DrawChain
Added information about
DrawCountLimitter and
DrawPersonaLimitter

6.
2023/08/15 1.1.2

Production Environment
Information
Ark.one Testnet
Environment Information
Modified Incubator
contract address

5.
2023/07/31 1.1.1

Production Environment
Information
Modified IPFS item in
environment information
Ark.one Testnet
Environment Information
Modified JSON-RPC item
in environment
information
Retrieving a list of owned
EGGs
Modified JSON-RPC item
in sample code

4.
2023/07/10 1.1.0

Added the following
pages
PERSONA Overview
PERSONA
Implementation Guide
Absorbing
Generating and
Distributing PERSONA
Using PERSONA as a
User
Content Development
Overview
Added links to
PERSONA
implementation
Implementation of
DrawChain
Added explanation of
setting blacklists for
DrawFollowerLimitter
Moved interface
information to
environment information
Added a function to return
the number of draws
(history) per PERSONA
owner
Added explanation of
contract limiting the
number of draw() calls by
the same PERSONA
Added clarification for the
delivered() function
Signature Generation
Procedure
Added the creation of
signature data used during
PERSONA distribution
Production Environment
Information
Updated the following
contract addresses
MatrixMaster
Added the following
contract addresses
EggSupplement
SquareSupplement
ContentsScopeApprover
AbsorbAuthority
DrawAbilityLimitter

DrawPersonaCategoryLimitter
DrawQuantityLimitter
DrawFollowerLimitter
AbsorbIntervalApprover
Added the following ABIs
EggSupplement
SquareSupplement
ContentsScopeApprover
AbsorbAuthority
DrawAbilityLimitter

DrawPersonaCategoryLimitter
DrawQuantityLimitter
DrawFollowerLimitter
Added the following
interfaces
IDrawChainAuthorizer
IAbsorbApprover
Moved the library from
the signature page
Ark.one Testnet
Environment Information
Added the following
contract addresses
EggSupplement
SquareSupplement
ContentsScopeApprover
AbsorbAuthority
AbsorbIntervalApprover
Added the following ABIs
EggSupplement
SquareSupplement
ContentsScopeApprover
AbsorbAuthority
Added the following
interfaces
IDrawChainAuthorizer
IAbsorbApprover
Moved the library from
the signature page
ARCANA Attribute Value
Calculation
Modified Lottery
Probability of Green Stars
ANICANA API
Added a reference
information page for
ANICANA API

3.
2023/06/23 1.0.3

Production Environment
Information
Added the following
contract addresses
DrawChain
Persona
Added the following ABIs
DrawChain
Persona
Ark.one Testnet
Environment Information
Added the following
contract addresses
Persona
Added the following ABIs
Persona
Added web3 version
information to the
following pages
Retrieving a list of owned
EGGs
Advanced Security
Settings for Wallet
Connection

2.
2023/05/31 1.0.2

Production Environment
Information
Modified JSON-RPC item
in environment
information

1.
2023/04/28 1.0.1

Implementation of
DrawChain
Modified items in
History’s structure
Ark.one Testnet
Environment Information
Updated the following
contract addresses and
ABIs
DrawChain
DrawAbilityLimitter

DrawPersonaCategoryLimitter
DrawQuantityLimitter
DrawFollowerLimitter

198 Chapter 67. Update History

	Release Information List
	LEVICA-app（Production）
	release information

	LEVICA-app（Ark.one）
	release information

	LEVICA API（Production）
	release information

	LEVICA API（Ark.one）
	release information

	ARCANA Generation API（Production）
	release information

	ARCANA Generation API（Ark.one）
	release information

	LEVIAS ID（Production）
	release information

	LEVIAS ID（Ark.one）
	release information

	Octillion（Production）
	release information

	Octillion（Ark.one）
	release information

	API Server（Production）
	release information

	API Server（Ark.one）
	release information

	AdSquare（Production）
	release information

	AdSquare（Ark.one）
	release information

	What is ANICANA Chain?
	Consortium-Based Private Chain
	1. Become a Network Validator
	2. Send Transactions to the Network

	System Requirements
	Consensus Algorithm
	How to Join ANICANA
	Quick Start for Publishers
	Initial Setup
	Steps to Join the ANICANA Network

	Content Development
	Steps to Build Matrix

	Operations
	Steps to Generate EGGs
	Steps to Generate ARCANA

	Knights of the Round Table
	Permission-type Nodes Granting Approval for Validators
	Basic Structure

	Roles in the Knights of the Round Table
	Roles
	Receipt of ANM by Knights & Queen
	Queen’s Election
	Vote of No Confidence against the Queen
	Opening of Validator (Candidate) Nodes

	Mechanism of ARCANA Generation
	ARCANA Generation
	Storage of ARCANA Generation Information (IPFS)
	Storage of ARCANA Generation Information Index (Contract)

	ARCANA Life Cycle
	ARCANA Life Cycle

	ANICANA Life Cycle
	Development Engineers / System Vendors, etc.
	Content Owners / Publishers (Validators)
	Users / Content Users
	Secondary Marketplace / Market Operators
	Extractors / Disassembling Engineers

	Validator Setup Procedure
	System Configuration
	Configuration Diagram

	ANICANA Wallet Registration
	Wallet Registration Procedure

	Preparing Your AWS Account
	Validator Setup
	Apply as a Validator Candidate
	Generating Square Keys
	Content Development Overview
	Implementation Flow

	Ark.one Environment Information
	Environment Information
	Contract Addresses
	Contract ABI
	Interfaces
	Libraries
	ANICANA Portal Site
	Call ARCANA Generation Page Script
	Check Status
	Login Script
	LEVICA
	IPFS

	Production Environment Information
	Environment Information
	Contract Addresses
	Contract ABI
	Interfaces
	Libraries
	ANICANA Portal Site
	ARCANA Generation Page Invocation Script
	check status
	Login Script
	LEVICA
	IPFS

	User Wallet Retrieval
	User Registration Flow

	Wallet Connection
	API Specification
	Login Script

	ARCANA Generation Process
	Integration Flow with ARCANA Generation Page (API)
	ARCANA Generation on the Ark.one

	ARCANA Generation API
	API Specifications
	Script to Invoke ARCANA Generation Page
	Check Status
	Flow to ARCANA Generation

	Get a List of Owned EGGs
	Signature Generation Procedure
	Creation of Signature Data for ARCANA Generation
	Creation of Signature Data for PERSONA Distribution
	Libraries

	LEVICA Payment
	API URL Format
	Environment Information
	Request Authentication
	Integration Flow with LEVICA
	Main APIs for Integration
	Testing in the Staging Environment

	PERSONA Overview
	PERSONA Growth / Object Absorption Contract
	DrawChain / Contract to Retrieve Specific Data

	PERSONA Implementation Procedure
	Absorbing
	Overview Diagram
	Setting Absorbing Conditions
	Prerequisites
	Restricting the Execution of absorb()
	① Create a contract to restrict the execution of absorb()
	② Register the created contract

	Other Functions for Setting absorb() Conditions
	Delete registered ApproverInfo (AbsorbAuthority.sol)
	Replace registered ApproverInfo (AbsorbAuthority.sol)
	Get the number of registered AbsorbApprovers for each Content ID (AbsorbAuthority.sol)
	AbsorbApprover list for each Content (AbsorbAuthority.sol)
	ApproverInfo
	Get SquareKey from arcanaId (EggSupplement.sol)

	Implemented IAbsorbApprover
	Contracts Limited by Square Key
	Contract for Time Restriction on Re-execution

	Implementation of DrawChain
	Overview
	Setting Up DrawChain
	Setting Active and Inactive States

	Other DrawChain Functions
	Executing DrawChain
	Implemented IDrawChainAuthorizers
	Contract to Limit the Ability Values of PERSONAs that Can Draw (DrawAbilityLimitter.sol)
	Contract to Limit PERSONA Categories that Can Draw (DrawPersonaCategoryLimitter.sol)
	Contract to Limit the Number of Draws (DrawQuantityLimitter.sol)
	Contract to Limit the Caller of draw() to Subscribers of the Square Key Associated with DrawChain (DrawFollowerLimitter.sol)
	Contract to Limit the Number of draw() Calls by the Same PERSONA (DrawCountLimitter.sol)
	Contract to Limit draw() Calls to Specific PERSONAs (DrawPersonaLimitter.sol)

	Generating and Distributing PERSONA
	Overview Diagram
	Generating PERSONA
	Absorbing
	PERSONA Contract
	Generating PERSONA (Persona.sol)
	Generating PERSONA (No Array Version) (Persona.sol)
	MintCondition
	Setting Mutable Metadata (Persona.sol)
	Getting Metadata (Persona.sol)
	Finding Available PERSONA IDs (Persona.sol)
	Approving the Transfer of a Specific NFT to Addresses Other Than the Owner (With Signature) (Persona.sol)
	Transferring NFTs (With Signature) (Persona.sol)
	Approving the Transfer of a Specific NFT to Addresses Other Than the Owner (Persona.sol)
	Transferring NFTs (Persona.sol)

	Using PERSONA as a User
	Absorbing
	• Absorbing Success Rate
	• Attribute Value Increase on Absorb Success
	• Attribute Value Decrease on Absorb Failure
	Performing Absorbing

	Executing DrawChain
	DrawChain Execution History

	ARCANA Generation Information
	ARCANA Generation Information

	ANICANA API
	Detail API
	Ipfs Upload API

	Affiliate Functionality
	Implementation Flow - Issuance of Referral Code
	Implementation Flow - Use of Referral Code

	Requesting Matrix Development
	Matrix Development
	Matrix Construction Steps
	Matrix Standards
	Matrix Templates

	Generating EGGs
	Generation Process

	Checking EGG Inventory
	Uploading to IPFS
	Environment Information

	Obtaining ANM (ANIMA)
	What is ANIMA (ANM)?
	Instances Where ANIMA is Required as Gas
	ANIMA Generation Logic

	Validator Management Interface
	Obtaining a Private Key
	DASHBOARD
	PROFILE
	EGG
	KNIGHT
	QUEEN

	LEVICA Merchant Management Screen
	Payment History Screen
	All Billing History Screen
	Reuse Settings Screen
	About Reuse Functionality

	Interface Specifications
	MATRIX Standard
	Other Smart Contract Interfaces

	Gene Calculation
	Gene Overview
	Data Structure of Gene Information
	Gene Calculation for EGG Generation from SHARD
	About Mutation

	ARCANA Extraction
	Duration of ARCANA Extraction
	Number of ARCANA SHARDs Obtained in ARCANA Extraction
	Steps for ARCANA Extraction

	ARCANA Attribute Value Calculation
	Lottery Probability of Green Stars
	Lottery Probability of Elements

	Bloodline
	Overview
	Information Retrieval
	List of Bloodlines

	Tenebrae Overview
	Overview
	Issuance of Tenebrae
	Equipping Tenebrae
	Activation of Tenebrae
	Tenebrae Flow

	Implementation of Tenebrae
	Operator (RECIPE Owner)
	Skill Contract
	Registration of Skill Contract
	Reference of Skill Contract
	Tenebrae Mint Assessor Contract
	Registration of Tenebrae Mint Assessor Contract
	Reference of Tenebrae Mint Assessor Contract
	Recipe Minting
	Fetching Ability Values of ARCANA Token/PERSONA Token
	Fetching the List of Equipped TENEBRAE
	Fetching History
	Granting and Revoking Access to Ability Value Modification Functions

	Manufacturer
	Production of TENEBRAE Tokens

	Consumer (TENEBRAE Token Owner)
	Equipping TENEBRAE Tokens
	Activation of Skill

	Publisher
	Fetching Metadata Set by Activating TENEBRAE
	Consuming Metadata Set by Activating TENEBRAE
	Fetching Ability Value Changes as Game Results
	Updating Incremental Values and Ratios of ARCANA/PERSONA Ability Values (Authorization Required)

	Advanced Security Settings for Wallet Connection
	One-Time Token

	Update History

